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FORWARD

This report was prepared by McDonnell Douglas Astronautics Company - Eastunder contract NAS-1-11774 for the National Aeronautics and Space Administration,
Langley Research Center, Hampton. Virginia. It was administered under the direction
of the Materials Division, Materials Research Branch, with Mr. D. R. Rummler
acting as the technical representative of the contracting officer. The McDonnell
Douglas program manager was Mr. J. W. Davis. Others who participated in this
program and in the preparation of this report are: Messrs. B. A. Cramer,
W. J. Edens, and D. C. Ruhmann. The experimental portion were performed by Messrs.
R. L. Hillman (steady state creep testing) and M. B. Munsell (cyclic creep
testing). Statistical analysis was performed by Dr. J. F. Brady, Mr. W. J. Edens,
Mr. R. K. Linback, and Mr. D. C. Ruhmann.

This report covers the period from July 1972 to June 1974.
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SUMMARY

Phase I of this four-phase program was concerned with the steady-state and

cyclic creep behavior of four materials in sheet form, L605, Ti-6A1-4V, Rene' 41,

and TDNiCr, applicable to a metallic radiative thermal protection system (TPS).

A survey of the literature was conducted to gather available steady-state

creep data for each of the materials. Empirical equations were developed for these

data sets, using regression analysis techniques to express steady-state creep

strains as functions of stress, temperature and time. In addition, the material

gage and rolling direction were included as variables where applicable data were

provided.

A series of supplemental steady-state creep tests were conducted on tensile

specimens for each of the four materials. The majority of tests were conducted on

thin gage sheet specimens (u.025 cm) in the longitudinal rolling direction although

a limited number of tests were conducted to investigate effects of gage (%.060 cm)

and transverse direction on creep response.

Cyclic tests were conducted to evaluate creep response characteristics under

cyclic stress and temperature profiles typical of a Space Shuttle entry. These tests

were as follows:

Basic Cycle - Stress and peak temperature were maintained constant for twenty

minutes per cycle. Specimens of each material were cycled 100 times. Data from

these tests were used to develop cyclic empirical creep equations for each material.

Stepped stress profiles - Stress and peak temperature were maintained constant

for twenty minutes per cycle but stress level was varied as a function of cycle.

This series of tests was designed to simulate stress redistribution, due to creep,

occurring in a TPS panel.

ii

PACDONNELL DOUOGLAS ATRONAUTICS CO*MPANV EAST



" PREDICTION OF CREEP IN PHASE I NAS-1-11774
IMETALLIC TPS PANELS SUMMARY REPORT

Complex trajectory - Peak temperature was maintained constant for twenty minutes

per cycle but stress was varied during the cycle. The stress was not varied between

cycles. Data from the stepped stress profile and complex trajectory tests were used

to investigate the applicability of the time and strain hardening theories of creep

accumulation during cyclic creep exposures.

Idealized trajectories - Stress and temperature flight profiles were idealized

into a series of constant steps. Specimens were repeatedly subjected to these pro-

files for up to 100 cycles.

Simulated mission profiles - Specimens were subjected to mission stress and

temperature that changed with time as would occur in flight. These changes were

conducted to 200 cycles.

Additional cyclic tests, conducted to assess the effect of time per cycle and

effect of atmospheric pressure on creep strain, completed the cyclic creep testing.

Test results demonstrated that there is no significant difference between

cyclic and steady-state creep strains (for the same total time at load) for the

alloys L605, Ti-6Al-4V, Rene' 41, and TDNiCr. A single linear equation describing

the combined steady-state and cyclic creep data, for each alloy, resulted in standard

errors of estimate higher than desirable for the individual data sets. Well fitting

creep strain equations were developed for either steady-state or cyclic creep data

using linear least squares analysis techniques. A non-linear least squares analysis

of the combined cyclic and steady-state data appeared to offer potential for lowering

the standard error of estimate but time prevented further exploration in this area.

Predictions of strains that were produced by complex trajectory and simulated

mission tests (using equations based on simple cycles) was successfully accomplished.

A computer program was specifically written for this analysis. This computer program

is based on time and strain hardening theories of creep accumulation. For Ti-6AI-4V,

iii
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and TDNiCr, the strain hardening theory of creep accumulation provided the best

predictions, while for Rene' 41 time hardening,and for L605 a combination of strain

and time hardening provided the best predictions.

A gage effect on creep response (thin gages crept faster) was noted in both the

literature survey and the supplemental steady-state creep data bases for L605,

Rene' 41, and TDNiCr. An effect of material rolling direction on creep strains was

observed in TDNiCr.

No effects on creep strain due to variation of time per cycle (for the same

total time) or atmospheric pressure were observed for any of the four materials.

Comparison of data obtained from idealized and simulated mission tests indicates

that adequate cyclic creep response analyses can be performed by expressing the

trajectory conditions in a simplified step-wise form.

The International System of units (SI) are used in this report. U.S. Customary

Units are also generally provided. Applicable conversion factors are presented in

Appendix A.

iv
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1.0 INTRODUCTION

One of the design requirements of reentry vehicle metallic thermal protection

systems (TPS) is that deflections, occurring during ascent and entry mission phases,

due to differential pressure and thermal loading, do not exceed design limits

established to minimize localized aerodynamic heating and to minimize the need for

panel refurbishment (Reference 1). Because these deflections include permanent

deformation due to creep, the influence of cyclic entry conditions on material creep

response and methods for predicting these deformations are needed.

Several experimental programs (References 2 to 6) have been conducted to

determine if cyclic entry environments produce a different creep strain response

than would be predicted based on data obtained from steady-state creep tests. These

programs have produced varying, and at times, conflicting results as to whether a

cyclic environment produces different results than those obtained in steady-state

environments.

This four-phase program was initiated, in an effort to further investigate

cyclic creep response and to develop design methods applicable to TPS structures

subjected to environments causing creep to occur. Four alloys, in sheet form,

Ti-6A1-4V, Rene' 41, L605 and TDNiCr, were studied. Although the work was initiated

for application to Space Shuttle TPS, results are considered applicable to a wide

variety of structures which are cyclicly exposed to creep producing thermal environ-

ments.

Phase I of this program was designed to investigate the steady-state (constant

temperature and load) and cyclic creep response characteristics of the four alloys.

Steady-state creep data was gathered through a literature survey to establish

a reference data base for each alloy. These data bases were used to develop

empirical equations describing creep as a function of time, temperature, and stress.

1-1
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These equations were the basis for establishing test parameters for 
supplemental

steady-state creep tests conducted on tensile specimens. The purpose for these

tests was to compare the creep response of sheet used in this program 
with that of

the literature survey data base, and also to supplement the data base. 
Effects of

variables such as material thickness and rolling direction were studied.

Tensile cyclic creep tests were conducted to characterize material cyclic creep

response under varying loads and temperatures. These data were used to evaluate

analytical methods to predict cyclic creep behavior. Basic cyclic tests, using

simple constant stress and temperature cycles to represent flight conditions, 
pro-

vided data for comparison with steady-state response and development of empirical

equations for cyclic creep. Other tests were conducted using these same cycles but

with a varying stress as a function of cycle to simulate the changing stresses

present in a creeping beam as a result of stress redistribution. 
Additional tests

were conducted using complex stress and temperature profiles representative of Space

Shuttle Orbiter trajectories. Tests were generally conducted for 100 simulated

flight cycles.

A computer program was written, applying creep hardening theories in conjunction

with empirical equations for creep, to aid in analysis of these test data.

In Phase II a computer program will be written to predict TPS panel creep

deflections based on inputs of panel geometry, trajectory data, and empirical creep

equation coefficients. Corrugation stiffened and rib stiffened sub-size panels will

be tested to provide data for verification of prediction capability.

Phase III involves using methods of analysis developed in Phases I and II to

analyze full size heat shield panel creep deformation data developed 
on other R/D

programs (References 2 and 3).

In Phase IV recommended creep design procedures for the Space Shuttle TPS

1-2
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will be established. These procedures provide methods for analyzing material creep

data, procedures for design of TPS, and rules for inspection and measurement of

panel deflections.

This report contains results of Phase I of the study. Included are data for

steady-state and cyclic tests conducted and associated analysis for the four alloys

studied.

1-3
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2.0 TECHNICAL APPROACH

2.1 TPS DESIGN CRITERIA AND ENVIRONMENT

This program was associated with the use of metallic materials for the Space

Shuttle TPS. Therefore, the test conditions were representative of the Reference

(1) Shuttle design criteria and environments.

In the Reference (1) studies, entry trajectories were shaped to accommodate

the type of TPS used. For example, trajectories for ablative and Reusable Surface

Insulation (RSI) TPS were shaped so that high surface temperatures occur early in

the entry trajectory. This resulted in low total heat to the TPS and a high

surface temperature. Entry trajectories for metallic TPS were shaped to minimize

peak surface temperatures so that the metals would not overheat. This resulted

in high total heat input and a relatively long time at peak surface temperature.

The Shuttle orbiter design ascent trajectory for a metallic TPS, based on

Reference (1) studies is shown in Figure 2-1. Limit pressures resulting from

this trajectory were multiplied by a 1.4 factor of safety to obtain design

ultimate pressures shown in Figure 2-2. In addition to the aerodynamic pressure,

a minimum vent pressure of +9.7 kPa ultimate was used over the entire vehicle

for TPS design. These pressures occur while the panel temperature is less than

366 0K.

The design entry trajectory is shown in Figure 2-3. Resulting ultimate differ-

ential pressures and bottom centerline temperatures are shown in Figures 2-4 and

2-5. Design limit temperatures for this trajectory over the Orbiter surface are

shown in Figure 2-6.

Test temperatures and differential pressure profiles used in this study were

based on the entry profiles shown. The cycle time of 20 minutes at peak temperature

were used as a baseline throughout cycling testing. The entry temperature profile

2-1
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at X/L = .50 was used as typical for the basis of simulated 
mission and idealized

cyclic trajectory tests for each of the materials.

Stress levels and temperature levels tested were designed to yield 100 cycle

creep strains of up to approximately 0.5%. For typical 2.5 cm. deep corrugation and

rib stiffened TPS panels, this creep strain level is consistent with the following

allowable TPS deflection criterion:

6 = .25 + .01L (cm)

where 6 = maximum elastic plus creep deflection at panel

midspan

L = panel length (distance between supports)

This criterion was based on minimizing local panel heating as established

through thermodynamic studies during the referenced Shuttle 
studies.

This criterion provides for a maximum deflection of .76 cm for the 50.8 cm

panel length defined during the referenced studies.

Loads and temperatures resulting from design trajectories are normally 
used to

size TPS panels for strength. However, in designing for creep deflections, nominal

loads and temperatures are usually used. Reference (1) studies defined the differences

in loads and temperatures for the design and nominal trajectories 
as (1) nominal

pressures = design limit pressure/1.1
3 and (2) nominal temperatures = design tempera-

tures -250K (100K per 304.8 m altitude dispersion from nominal trajectory).

2.2 SELECTION OF MATERIALS

Past Space Shuttle studies have shown that a combination of several 
metallic

materials will provide the lightest weight metallic TPS. For example, up to 7000 K,

titanium alloys appear to provide the lightest panels. In the temperature range of

700-11440 K, the nickel base alloys offer weight advantage. For temperatures between

1144 and 1255 0K, the cobalt base alloys are preferred, and, finally for temperatures

between 1255 and 1500
0 K, the dispersion strengthened alloys appear to be the best choice.

2-4
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Above this temperature coated refractory metals would have to be used. A typical

distribution of metals on the Shuttle, based on temperature range of applicability,

is presented in Figure 2-7.

During the Space Shuttle studies (Reference 1) a review was made of the most

promising titanium, nickel, cobalt, and dispersion strengthened alloys to determine

which alloy should be used on shuttle. The following topics were considered:

o Availability in thin sheet

o Thermal stability

o Fabrication

o Weldability

o Oxidation resistance

o Strength

o Creep resistance

o Cost to manufacture

Material properties for the nine alloys reviewed are presented in Table 2-1.

Based on the results of these studies (References 1 and 7) and the goals of

this program, Ti-6Al-4V, in the annealed condition, was selected as the titanium

alloy for evaluation. Another titanium alloy, Ti-6Al-2Sn-4Zr-2Mo, was also con-

sidered. The fabricability and thermal stability of Ti-6AI-4V and Ti-6A1-2Sn-4Zr-2Mo

are the same. However, since Ti-6Al-4V has been in existence for over 10 years and

was evaluated extensively for the Supersonic Transport (SST) program and for the

Reference 1 studies, the data base for Ti-6Al-4V was greater than that for the

newer alloy Ti-6Al-2Sn-4Zr-2Mo.

The nickel base alloy selected was Rene' 41. The basis for this selection was

the fact that Rene' 41 was evaluated as full scale TPS panels in the Space Shuttle

Supplementary Structural Test Program .(SSTP), (Reference 2). In addition to panel

evaluation, support components for the panels were designed, fabricated, and tested,

to demonstrate their design feasibility and reuse capability.

2-5
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MATERIAL RANGE TEMPERATURE

RENE'41 (11720 AGED); 700oK-11440 K

L-605 1144oK-12550 K

TD-Ni-Cr 1255oK-14780K

COLUMBIUM (FS-85) 1478oK-16440 K

RERADIATIVE TPS PANEL MATERIALS

-CARBON/CARBON

NICKEL SUPERALLOY SHINGLES UPPER
COLUIBIUM CHINE 5 SURFACES

SCOLUMBIUM , ' LOWER
SHINGLES SURFACES

TITANIUM NICKEL'
SHINGLES SUPERALLOY

TITANIUM HOT STRUCTURE
HOT.

STRUCTUIREi

NICKEL SUPERALLOY SHINGLES

MATERIAL AREA USED S

E ; CARBON/CARBON 5.3 INCONEL718-SHINGLES 2.42

-COLUABIUM (FS-85) 14.2 RENE'41-HOT STRUCTURE 4.65

II HASTELLOY X SHINGLES 22.6 Ti SHINGLES 638

SRENE'41-SHINGLES 2.15 [-- Ti HOT STRUCTURE 42.3

TOTAL 100.00

FIGURE 2-7 TYPICAL SHUTTLE METALLIC THERMAL PROTECTION SYSTEM
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TABLE 2-1
MATERIAL PROPERTY COMPARISON

ULTIMATE! YIELDCLASS DENSITY STRENGTH: STRENGTH MODULUS
(TEMPERATURE MATERIAL px 10- 3  FTU MPa FTyMPa' E GPa
USE RANGE oK) kg/m 3  T (RT)

(RT) (RT)

6AI-4V
TITANIUM 4.43 1103 1000 110.3TITANIUM

TITANIUM 8A1-1 -V-37 100020.7
ALLOYS TITANIUM 4.37 1000

(590-811)
6Ai-2Sn-4Zr-2Mo
(TRIPLEX
ANNEALED) 4.54 1117 1027 110.3
TITANIUM

RENE'41
(1394 0K SOLN ,8.25 965 689 217.9

NICKEL 11440K AGE)
BASE
SUPERALLOYS HASTELLOY-X 8.22 758 345 197.2
(811-1255)

INCONEL 718 8.22 1241 1034 204.1

COBALT L-605 9.13 896 365 235.8
BASE
SUPPERALLOYS
(1144-1255) HAYNES 188 9.22 862 379 231.0

DISPERSION
STRENGTH ENEDSTRENGTENED TD-Ni-Cr 8.44 689 448 140.7ALLOYS
(1255-1500)
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There are a variety of heat treatments available for Rene' 41, each maximizing

given property. For example, the 1339
0 K solution treatment, followed by an age at

10330 K, gives Rene' 41 the highest tensile strength compared to 
other Rene' 41 heat

treatments but provides lower rupture strength than other heat treatments 
and limits

reuse to below 1033
0K (the aging temperature). For good stress-rupture strength, a

solution treatment of 1450*K followed by an age at 1172
0K is recommended. However,

this heat treatment tends to increase the materials sensitivity to 
strain-age crack-

ing during post weld heat treatments. A third heat treatment, 
which has reduced sus-

ceptibility to strain-age cracking, involves solution treating at 1394
0K and aging at

11720 K. Creep properties achieved with the 1394
0K solution closely approach the pro-

perties obtained with the 1450*K solution treatment and the material is not as crack

sensitive (References 8 and 9). Because of the better crack resistance and dimensional

stability, the 1394
0K solution and the 1172

0 K age heat treatment was the heat treatment

used on the Rene' 41 panels in the SSTP program and on in-house studies of cyclic

creep, (References 2 and 4), and is the heat treatment selected for use on this program.

The cobalt base alloy selected was L605. This material was also used in fab-

rication and evaluation of full scale TPS panels in the Reference 2 program.

At the time of selection another cobalt base alloy, Haynes 188, was considered,

which has properties similar to L605 but is more oxidation resistant above 1275
0K

than L605. It was not selected because there were no known large panel tests which

could be analyzed in the third phase of .this program.

A variety of dispersioned strengthened alloys exist ranging from the iron base

alloys DH242 and GE1541, to the nickel base alloys Inconel 853, TDNiCr, 
and TDNiCrA1.

However, above 13660 K only TDNiCr and TDNiCrAl possess the strength and oxidation

resistance necessary for consideration in Space Shuttle TPS. TDNICr was therefore

selected because it has been developed to the point where it can be considered

commercially available, and was also immediately available from an ongoing NASA

2-8
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program (Reference 10).

In addition, a program to manufacture and test full scale TDNiCr panels

(Reference 11) allowed data for prediction verification under Phase III of the program.

2.3 SURVEY OF LITERATURE

At the start of this program a search was performed to gather available creep

data for thin gage sheet material, in order to establish a reference data base for

the four alloys being studied. As part of this survey the following sources were

consulted:

o NASA Scientific and Technical Information Facility.

o Defense Metals Information Center, Battelle Memorial Institute.

o McDonnell Douglas Research and Engineering Library.

o Material vendors, research laboratories, airframe and jet turbine manufactur-

ers and others believed to be active in creep studies.

Fifty literature (Appendix B) sources out of approximately 600 dating from

January 1962 to July 1972 were reviewed in detail.

This search revealed that most of the creep data was inadequate for establish-

ing a data base. For example, much of the data was developed on rod and bar

specimens rather than sheet or strip specimens. These data were rejected because

the methods for manufacturing bar are different from those used to produce sheet.

There were, however, a few sources that presented enough detailed information,

such as lot number, test direction, gauge, and plots or tabulation of strains vs

time to establish a reasonable data base. These sources consisted of Reference (12)

for Ti-6Al-4V, References (13) and (14) for Rene' 41, Reference (15) for L605,

and References (16) to (21) for TDNiCr.

2-9
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The Ti-6Al-4V reference contained data generated on sheet produced by two

separate manufacturers and tested by two laboratories. One set of data was obtained

from sheets 0.160 cm in thickness, manufactured by Mallory Sharon Titanium Company

(now Reactive Metals Inc.) and tested by Joliet Metallurgical Laboratories.

The second set of data was obtained from sheets 0.102 and 0.160 cm, manu-

factured by Titanium Metals Corporation of America (TIMET), and tested by Metcut

Research Associates. These data were for approximately 120 creep tests at tempera-

tures ranging from 589 to 811*K.

The heat treatment selected for Rene' 41 is relatively new (solution treat at

13940K and age at 1172 0K) and as a result the literature survey only produced two

references. Reference (13) consisted of 10 creep tests performed on 0.127 cm thick

material while Reference (14) contained 24 tests performed on 0.020 cm thick material.

These two references had data for tests performed over the temperature range of 922

to 12550K.

The reference for L605 (15) contained data from approximately 52 creep tests

performed on sheet ranging in thickness from 0.013 to 0.203 cm in the temperature

range of 922 to 12550K.

TDNiCr had the largest number of sources available to establish a data base

for a dispersion strengthened alloy (Reference 16 to 21). These references con-

tained data performed on sheet ranging in thickness from .038 to .152 cm in the

temperature range of 1033 to 1477*K.

2.4 PROCUREMENT OF MATERIALS

Past studies have shown that the weight of the TPS is dictated by minimum gage

limits. Therefore, the baseline material gage selected for testing was thinnest sheet

available of approximately .025 cm thickness (.025 for L605, .031 for titanium, .025 for

TDNiCr, and .027 for Rene' 41). Thicker gage sheet (.064 for L605, .056 for titanium,

2-10

MCDOPNNLL DOUGLAS ASTROAITWA CS CO MPPAV P - AST



RnEDICTION OF CREEP IN PHASE I NAS-1--11774
METALLIC TPS PANELS SUMMARY REPORT

.051 for TDNiCr, and .054 for Rene' 41) was also obtained for each of the four alloys

for use in comparison testing for gage effects and for application in TPS concept

fabrication during Phase II.

To ensure that the material was representative of current technology, Rene' 41,

L605, and Ti-6Al-4V sheet were procured to existing AMS or Military specifications.

TDNiCr, not available commercially, was obtained from NASA. This material was pro-

duced for NASA's Lewis Research Center by Fansteel Inc., under NASA Contract

NAS-3-13490. In addition, for each alloy, all material of the same gage was procured

from one heat of material. This eliminated the possibility of chemistry and/or

property variation in different heats of material from influencing the creep tests.

Summarized in Table 2-2 are the supplier certifications and purchase specifica-

tions of materials procured.

2.5 SELECTION OF CREEP SPECIMEN CONFIGURATION

Because both steady-state and cyclic testing were conducted on tensile specimens

in this phase of the program, selection of specimen geometry required consideration

of both types of test furnaces and measurement requirements. The same specimen

geometry was used for both steady-state and cyclic tests to eliminate any possible

variation in creep response due to specimen geometry.

The measurement of relative movement of scribe marks on a platinum slide rule

attached to the creep test specimen is an accurate method applicable in steady-

state testing where the furnace contains view-ports for continual readout of

creep strains without distrubing the specimen. This approach does not require

specimen tabs. However, in cyclic tests, where elastic loads are removed and

reapplied, slide rule buckling or slippage can result in inaccurate creep measure-

ments. For this type of testing the use of scribe marks on the specimen, read

with a measuring microscope, are considered to provide a more reliable approach.
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To provide a location for the scribe marks, outside the specimen test zone, tabs

were provided on the specimen as shown in Figure 2-8. Tabs were provided to

eliminate possible adverse effects of locating the scribe marks in the test zone

on the thin gage specimens. Holes were drilled in the tabs on Rene' 41, L605, and

Ti-6Al-4V specimens in an initial effort to utilize holes as a reference point for

creep strain measurements. Because scribe marks were subsequently used for this

purpose, holes were not provided in TDNICr specimens.

To investigate the effect that tabs and holes have on the stress distribution

in the specimen test zone, both photoelastic and finite element analyses were per-

formed. Results of the photoelastic analysis for a typical tab geometry are

presented in Figure 2-9. Stress distributions, based on analyses of the fringe

patterns,are shown along the free boundary where a uniaxial (tangent to the

boundary) stress exists and across the specimen at the tab centerline where a

biaxial stress state exists. Although the distribution across the specimen at the

tab centerline is the difference in principal stresses, it approximates the longi-

tudinal specimen stress distribution since stresses in the transverse direction

are relatively small. A stress concentration factor of approximately 1.4 is

shown to exist along the specimen boundary at the tab tangency point.

Finite element analysis was conducted using quadrilateral and triangular

membrane plates to model the specimen for the NASTRAN.Finite Element Computer

Program. The resulting stress distribution based on this analysis is shown in

Figure 2-10. Approximately seven percent of the specimen test zone area has greater

than two percent variation from the uniform stress and approximately four percent

of the specimen test zone area has greater than a five percent stress variation.

The stress concentration factor of 1.4 at the tangent point of the specimen tab

was substantiated in this analysis. Comparison of results for a specimen with a
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FIGURE 2-8 CREEP SPECIMEN GEOMETRY
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FIGURE 2-9 TENSILE SPECIMEN PHOTOELASTIC ANALYSIS
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FIGURE 2-10 CREEP SPECIMEN STRESS DISTRIBUTION DETERMINED
FROM FINITE ELEMENT ANALYSIS
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hole in the tab with those for a specimen without the hole indicated that the hole

(as defined in Figure 2-8) had a negligible effect on the resulting stress distri-

bution.

The presence of the hole was shown to relieve the stress concentration factor

due to the tab by impeding development of force gradients in the tab (Reference 22).

However, for the geometry used, this effect was minimal (approximately 1%). There-

fore, no further effort was made to optimize the hole location or size.

Minimizing tab width and tab fillet radius also reduces disturbances in the

uniform stress distribution. The 0.229 cm tab width and 0.152 cm fillet radius

used in the specimen design were considered minimums based on possibilities of

bending the tab during handling.

The selected length of the specimens was 4.45 cm, which allowed creep measure-

ments to be accomplished using a Unitron measuring microscope having a 5.08 cm

field of travel. Doublers at the loading holes, shown in Figure 2-8, were provided

to distribute bearing loads. Machining tolerances were based on McDonnell Douglas

Standard tensile specimen design designated 6M118.

2.6 CREEP SPECIMEN MACHINING AND IDENTIFICATION

Prior to machining the tensile specimens, blanks were sheared from their

respective sheets. These blanks which were 2.54 X 30.48 cm were then impression

stamped at the ends with an identification code to insure proper specimen control.

The code used is as follows. The first letter indicates the alloy, hence: L = L605,

R = Rene' 41, T = Ti-6Al-4V, and TD = TDNiCr. The numbers start from 1 and identify

an individual specimen. The last letter identifies the direction of rolling:

L = longitudinal (parallel to the direction of rolling); T = transverse (normal

to the direction of rolling). Therefore, specimen L50L is a L605 sheet specimen

2-17
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number 50 that was taken from the longitudinal direction of the sheet. Specimens

machined from the thicker gage sheet received the first ten numbers (01 thru 10)

for each of the alloys.

After identification the strips were stacked and sandwiched between 2-2.54 cm

thick aluminum plates (one pack per alloy). The packs were then drilled, bolted

together, and machined to the dimensions shown in Figure 2-8. Specimen packs were

separated after machining, individually deburred and the tab holes (reference

Section 2.5) were drilled. An attempt was made to drill .040 cm tab holes. How-

ever, difficulty was encountered because the small drill could not be properly

sharpened to cut through the superalloys without breakage. As a result, the hole

diameter was increased to .079 cm. Doublers were spotwelded to specimens and

specimens were cleaned and inspected to complete preparation for testing.

2.7 STEADY STATE TESTING PROCEDURES

2.7.1 TEST EQUIPMENT AND OPERATION

Steady-state tests were conducted using three Satec 7.62 cm (3 inch) diameter

tube furnaces mounted on specially built creep frames. This test facility is shown

in Figure 2-11.

2.7.1.1 Load Train. The creep frames were equipped with a self-aligning hemispherical

seated bearing (Monobail) at the load support point, to minimize misalignment of the

load train. The load train extended from the Monoball support through the furnace to a

dead weight loading platform below the furnace. Test loads were provided by weight

stacked on these platforms. The platform and weights were supported by a hydraulic

jack which was slowly retracted to apply the load to the specimen.

2-18
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SATEC FURINACE
OPTICAL MEASUREMENT SYSTEM

CREEP FRAME TEMPERATURE
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-l ii 1
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ISOLATION SYSTEM LOAD SYSTEM

FIGURE 2-11 STEADY-STATE CREEP TEST FACILITY
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2.7.1.2 Vibration Isolation. The creep frames were mounted on a support base as

shown in Figure 2-11. In order to minimize possible vibration effects on the load

train due to adjacent machinery, an isolation system was provided between this support

base and the laboratory floor. This system consisted of MB Isomode vibration pads,

piled to a compressed height of approximately 7 cm. Aluminum frames (boxes) were

utilized to provide lateral support for the pads. Pad height was established to

minimize response of the system. Seismometer readings taken showed that this system

reduced response to approximately 34% of that without the system. Based on force

transducer readings taken in the specimen load train, variations in applied load on

the specimen caused by these vibrations was shown to be (<0.5%).

2.7.1.3 Optical Measuring System. Optical systems,for measuring strains, were

mounted on brackets attached to the Satec Furnaces. Discussion of this system is

presented in Section 2.7.2.

2.7.1.4 Temperature Measurement. Three Honeywell temperature recorders were used

throughout steady state testing. A recorder having a range of 2560K (0
0F) to 8110K

(1000°F) was used in titanium testing and a recorder having a range of 922*K (1200
0F)

to 1255 0K (18000 F) was used in L605 and Rene' 41 testing. Each of these two

recorders was capable of recording temperatures to an accuracy of 0.5% of full scale

deflection, (+ 2.70 K and + 1.70K respectively). A third recorder having a range of

10890K (15000F) to 16420K (25000F) was used in testing TDNiCr specimens. This system

(recorder, thermocouple and wire) was calibrated to within 2.8
0K at the three

nominal test temperatures utilized.

Chromel-alumel thermocouples were spot welded (at the center and at each end

of the slide rule) on nichrome foil strips, which were in turn strapped to the
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specimen (see Figure 2-12) to monitor temperature during testing. For each test the

previous thermocouple bead was removed and a new bead and nichrome strip were made.

In addition to the chromel-alumel thermocouples, Pt-Pt-1O% Rh thermocouples were

used for the TDNiCr tests.

2.7.2 STEADY STATE STRAIN MEASUREMENTS

Creep strains were observed through use of a 5.1 cm (2.0 inch gage length)

precision formed polished, and scribed assembly spotwelded directly to the specimen

as shown in Figure 2-12. Strains were obtained by measuring relative movements of

scribe marks on the assembly. Initial attempts to use mechanical clamps for slide

rule attachment resulted in some slipping under the clamps.

The optical system shown in Figure 2-13 was used to view the slide rule attached

to the specimen suspended inside the furnace. This system was used to measure creep

strains directly using an optical extensometer which incorporates a Gaertner filar

micrometer microscope equipped with a 3.15 cm relay lens. Scribe marks on the

platinum slide rule were located and the change in length recorded by moving cross-

hairs controlled by micrometer slides on the microscope. The Gaertner filar micro-

meter microscope is capable of measuring length to 0.00005 cm. However, overall

precision of the measurement system for creep strain was considered to be within

+ .01% creep strain (e.g., 2% error on a creep strain of .5%, .490 to .510%) based

on repeated measurements taken. This error includes variations in readings between

different laboratory personnel.

Steady-state strain readings included elastic strains. These elastic strains

were recorded at the beginning and completion of each test.

2.8 CYCLIC TESTING PROCEDURES

2.8.1 TEST EQUIPMENT AND OPERATION

2.8.1.1 Test Furnace. Cyclic tests were performed in the two 6.35 cm diameter
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FIGURE 2-12 PLATINUM SLIDE RULE FOR STEADY-STATE CREEP MEASUREMENT
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FIGURE 2-13 OPTICAL MEASURING SYSTEM FOR STEADY-STATE CREEP TESTING
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furnaces shown in Figure 2-14. The upper part of each furnace contained a stainless

steel extension assembly which houses the load dynamometers. A schematic diagram of

the furnace test chamber is presented in Figure 2-15.

The furnace consists of a muffle tube which is heated by radiation from a

resistance heated graphite element. A mullite tube was used in testing of Rene' 41,

L605, and TDNiCr.' Minimum test temperature for these materials was 977 0 K (13000F).

For testing titanium specimens at lower temperatures (6600K to 8390K) a stainless

steel muffle tube was used. This was required to provide adequate temperature

control in the furnace test zone at the low temperatures.

Water cooled jackets are provided at both ends of the furnace.

2.8.1.2 Furnace Extension Assembly. Each of the furnaces was modified by the

addition of a stainless steel extension assembly to the furnace top. This assembly

provided a housing for the load dynamometers. These dynamometers measure individual

loads to each of three specimens in the furnace. Location of the dynamometers inside

the furnace system reduced the possibility of load measurement errors which could

have been caused by friction at the seal and load rod interface had the dynamometers

been outside the furnace.

A series of radiation shields were positioned between the dynamometers and the

furnace to minimize heat transfer from the furnace.

Thermocouples on the dynamometers were monitored during testing to verify that

they remained within the calibration temperature range during test.

2.8.1.3 Whiffle-Tree Load Fixture. In order to test a large number of specimens

at a reasonable cost, a whiffle tree load fixture was designed for use in the

furnaces. This fixture is shown in the schematic diagram of Figure 2-15.

The mechanism consists of two sets of loading pins and clevis fittings which serve

as load dividers. In this manner the applied load is divided into three separate

loads so that three specimens can be tested, at three different load levels, during
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FIGURE 2-15 SCHEMATIC OF FURNACE TEST CHAMBER
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a single furnace run. Two specimens can be tested during a single furnace run, if

desired, by utilizing only one set of fittings.

Figure 2-16 shows a close-up of the pin and clevis 
fittings and their relation-

ship to the specimens. By providing several pin fittings with different strap

(specimen) attachment locations, several different load ratios were attained for

use as required in the various tests. The following ratios were used:

1/1.66/2.58

1/1.23/1.44

1/1.37/1.75

1/1.47/1.94

1/1.78/2.00

Variation in specimen loads due to differential specimen strains was 
found to

be negligible. Adjustment nuts were provided at the top of the furnace to allow

initial alignment of the loading pins. Loads on each specimen were measured

separately by the three load dynamometers provided at 
the top of the furnace

extension assembly (reference Section 2.8.1.2).

The pin and clevis fittings were made from PH13-8Mo stainless steel 
alloy.

Loading straps and specimen attachment pins were TDNiCr. A factor of safety of

2.10 with a limit load of 45.4 kg per specimen was used in designing the whiffle

tree and related load train components.

2.8.1.4 Load Measurements. A 1.27 cm diameter stainless steel rod was connected

to the load divider (whiffle tree) mechanism. This rod passed through an "0" ring

vacuum seal and out through the bottom of the furnace where it was connected to a

load cell through a clevis and Monoball. The load cell was connected to a hydraulic

actuator through a second set of clevis and monoballs. Coupled to the actuator was

a hydraulic servo valve. This provided a closed loop load control system with the

electronic load controller. Load-profiles were programmed into a time based analog

programmer (Data Trak) which 2-26
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sent an electronic signal to the load controller which compared the signal to the

output of the load cell. Variations between the two signals caused the servo valve

to open or close, as required, to adjust the actual load to that of the programmed

load.

Data acquisition during the cyclic creep testing was obtained from a specially

designed digital data acquisition system. This system contained 50 channels which

were scanned every 50 seconds. The accuracy of this system is + 0.15%. The system

recorded the data on tape, and also contained an 8-character digital printer which

could be used to check the taped data. During testing the digital acquisition system

recorded the outputs from the ring dynamometers and thermocouple positioned on the

dynamometers. Control equipment is shown in Figure 2-17.

A Scientific Control Corporation Digital Computer (SCC-670-2) was programmed

to calculate mean loads and standard deviations from the cassette tape data. A

portion of a typical load profile, as recorded on a strip recorder, is shown in

Figure 2-18. Load plots were offset on the time scale to facilitate reading of

the data and eliminate any confusion between plots. Load data printout obtained

from the digital acquisition system for other typical load cycles on 3 simultaneously

tested specimens were as follows:

Cycle Load Load Load Total

No. Specimen 1 Specimen 2 Specimen 3 (Load)

MEAN SIGMA MEAN SIGMA MEAN SIGMA MEAN SIGMA

72 44.660 0,108 53,733 0,269 34,948 0.081 134,762 0.179

73 44.681 0,134 53.523 0.278 34,878 0.109 134.546 0.358-
74 44.868 0.094 53.528 0.245 34,974 0.091 134.843 0.255

75 44.867 0.074" 53.616- 0.302 . .35.089 0.086 134.816 0.378

78 44.784 0.125 53.485 0.226 35.040 0.091 134.654 0.315

77 45,013 0.102 53.530 0.256 35.167 0.084 134.789 0.243

78 44.894 0.068 53.547 0.295 35.162 0.066 134.924 0.235

79 44.942 0,055 53.564 0.273 35.182 0.048 134.951 . 0.124
80 45.032 0.074 53,706 0.255 35,01 0.034 135,085 0.160

81 .......5.073 0.090 53.723 0.226--- 35.342 0.072 135.00 3  -0.274
82 44.795 0.079 53.273 0.267 35.113 0.057 134.735 0.277

83 44.768 0.090 - 53.453 . 0.288 35,208 0.049 134.750 . 0.258

OVERALL 45.650 0.083-.... 54.310 -. 0.286 - 35.696 0,075 134.847 0.267
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FIGURE 2-18 TYPICAL LOAD PROFILES OBTAINED IN CYCLIC TESTS
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The mean value of load for each cycle was based on recorded loads at 50 second

intervals across the test profile. An overall mean load and standard were calculated

based on the mean values for each cycle. Average stress-time profiles for actual

trajectory stress history tests were obtained by data averaging loads at common times

in each cycle over the duration of the test. A load of approximately two percent of

maximum load was maintained throughout each cycle to prevent slack in the whiffle

tree mechanism.

2.8.1.5 Temperature Measurement. Within the hot zone of the furnace were two

platinum-platinum-l0% rhodium thermocouples. One of these thermocouples was used to

measure the temperature within the hot zone, while the other controlled the furnace.

Both of these thermocouples were connected to a thermocouple reference junction com-

pensator, which maintained a constant reference to within 0.14'K. From this

compensator the output of the measuring thermocouple was fed to a Honeywell strip

chart recorder (Model #15, 30.48 cm. scale). Prior to testing the temperature

recording system which included thermocouples, reference junction, and Honeywell

strip recorder was calibrated and found to be accurate to within 1.70 K.

The output from the control thermocouple was fed from the reference junction

to a Leeds and Northrup recorder/controller. This controller compared the electrical

signal from the controlling thermocouple to one that was previously programmed into

the Data Trak and adjusted the power input to the furnace to compensate for the

differences in signal. The temperature control was found to be capable of con-

trolling to within 1% of the desired temperature.

Prior to cyclic testing, calibrations were conducted to determine the magnitude

of temperature variations on the specimens. Calibrations were accomplished using

platinum/platinum-lo% rhodium thermocouples spotwelded at the upper tab (location #1

Table 2-3) and at the lower tabs (location #3, Table 2-3). Testing was performed under

a constant pressure of 1.33 Pa and temperature measurements were made immediately
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TABLE 2- 3

DETERMINATION OF TEMPERATURE GRADIENT IN CYCLIC TEST FURNACE

SPECIMEN LOCATION AND TEMP.oK MUFFLE
THERMOCOUPLE TARGET CONTROL THERMO

LOCATION TEMPoK COUPLE-OK SPECIMEN 1 SPECIMEN 2 SPECIMEN 3 TUBE
S(LEFT) (CENTER) (RIGHT) MATERIAL

1 658 657 660 STAINLESS STEEL
A 2 658 653 667 666 669

3 670 669 671

1 710 708 711 STAINLESS STEEL
B 2 714 718 718 716 720

3 721 719 723

1 775 773 776 STAINLESS STEEL
C 2 783 774 783 781 784

3 785 783 786

1 831 829 832 STAINLESS STEEL

D 2 839 832 839 836 840
3 841 839 842

1 1033 1030 1033 MULLITE
E 2 1033 1035 1041 1039 1041

3 1040 1038 1039

1 1253 1249 1253 MULLITE
F 2 1255 1257 1262 1259 1262

3 1261 1258 1260

2 THERMOCOUPLE LOCATIONS

3
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after the furnace stabilized at the set temperature. In the test the control

thermocouple was located in the center part of the furnace in the same region as

the #2 thermocouple. This allowed a direct comparison between the control thermo-

couple and the #2 thermocouple on the specimen.

Results of these calibrations are presented in Table 2-3. It can be seen that

a 120K maximum (2%) gradient existed within the specimen gage length (Test A and B).

The maximum gradient from specimen to specimen was 40K (Test B, D, and F). Variation

between the control thermocouple reading and the center specimen temperature was

less than 70K for all tests except for test A where a 130K variation was found.

The general trend of these results is that temperature variations are reduced as

test temperature is increased.

In addition to variations between the control thermocouple and the specimen

temperature some variation from the planned temperature occurred as a function of

time in each cycle. A typical result of calibrations made to measure this is shown

in Figure 2-19. For a flat temperature profile at 1144°K (16000F), variations of

+ 60K were observed.

2.8.1.6 Pressure Measurement. Pressure within the test chamber was controlled by

a regulated leak rate operated by a servo-valve coupled to an Alphatron Vacuum gage

(Model 530). The Alphatron gage sent an electrical signal to a Gran-Phillips auto-

matic controller (series 213). The controller compared the signal from the Alphatron

with that programmed on the Data Trak. The controller actuated the servo valve as

required to control the air pressure. Control equipment is shown in Figure 2-17.

Some manual control of a bleed valve was necessary in the testing of specimens

to an actual pressure profile (pressure variation from 1.33 Pa to one atmosphere).

In these profiles the controller maintained a programmed change in pressure from

1.33 to 66.5 Pa.
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FIGURE 2-19 TYPICAL TEMPERATURE PROFILE OBTAINED IN CYCLIC TESTS

2-34

MCDNNELL 0OUGLAS ASRONmMUTICS CoMPANVY EI aST



PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

At that point the operatore changed scales and the controller continued the program

from 66.5 to 2666 Pa. Beyond this point the vacuum pump was shut off and the

pressure was allowed to stabilize at atmospheric pressure.

2.8.1.7 Cyclic Creep Strain Measurements. The cumulative creep strain of each

specimen was measured after 1, 5, 15, 25, 50, 75, and 100 cycles (variations of this

was made in some cases. See specific test data). To make the creep strain measure-

ments, specimens were removed from the furnace. This was accomplished by separating

the furnace extension assembly from the top of the furnace (see Section 2.8.1.2)

and raising the assembly until the specimens were above the furnace.

The distances between the scribe marks on both sides of the specimen were

determined by using a Unitron Measuring Microscope as shown in Figure 2-20. This

scope is capable of measuring to within + 0.00025 cm. However, actual precision

in measurements based upon multiple measurements by several operators on the same

creep specimens was found to be + .00051 cm.
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2.9 DATA REQUIREMENTS AND TEST SELECTION

The approach toward selecting test conditions and types of tests for.supple-

mental steady-state testing and cyclic testing, is presented in this section.

2.9.1 SUPPLEMENTAL STEADY-STATE TESTING

2.9.1.1 Data Requirements. The original intent of the supplemental steady-state

creep tests was to use these tests to supplement the literature survey data base,

and demonstrate that the material being studied was representative of that data

base. The test matrix was established so that the resulting data could independently

serve as the basis of an empirical equation for comparison with cyclic test results.

In addition, a minimum number of tests for each alloy were planned for evaluation

of the effects of material thickness and material rolling direction on creep

response.

2.9.1.2 Selection of Conditions for Supplemental Steady-State Tests. Initially,

several experimental designs were examined in an effort to identify combinations

of test temperature and stress which would provide maximum useful data. The

studies were based on the L605 equation developed from the literature survey

(Reference Section 3.1.2).

lnc = 4.84599 + 2.12288 In a + .48945 Int - .29601 In -19.50143(1/T) (2-1)

where E = creep strain, %

t = time, hours

a = stress, MP a

= material thickness, cm

T = temperature, OK

In this effort to obtain an experimental design, the following requirements as

presented in Section 2.9.1.1 were considered.
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(1) Test data should be amenable to development of an empirical creep strain

equation. Applicability of each design for satisfying this requirement was checked

by generating simulated creep strain data using equation 2-1, performing regression

analyses, and evaluating the resulting prediction equation.

(2) Test temperatures should cover the ranges of interest for the material

being tested.

(3) Test temperatures and stress levels should produce creep strains in the

range of interest for metallic TPS. Maximum and minimum levels of creep strain

considered reasonable for supplemental steady-state tests were .50% in 50 hours and

.06% in 200 hours, respectively.

Some of the designs considered are presented in Figure 2-21. These designs

include the simple 3 x 3 factorial design and an orthogonal composite design, des-

cribed in References 23 and 24, and shown in Figures 2-21(a) and 2-21(b), respectively.

While each of these designs satisfies the first requirement ((1) above), they do not

satisfy the second or third requirement. This is evident from the figure since even

for the narrow temperature range of 10890 to 12000 K and the stress range of 13.8

to 69 MPa, creep strains as low as .022% in 200 hours (13.8 MPa @ 10890 K) and as

high as .6% in 6 hours (69 MPa @ 12000 K) result. These values are outside of the

range of interest.

In addition to these two designs, the design shown in Figure 2-21(c) was con-

sidered because it provides a maximum coverage of the test temperature and stress

range of interest for L605. Analysis of the simulated data using regression tech-

niques, however, demonstrated that the resulting prediction equation based on this

design was a function of time only.

A fourth design considered is a compromise between the other three. This design,

shown in Figure 2-21(d) allowed testing over the temperature range of 9780 K to 12550 K
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FIGURE 2-21 SUPPLEMENTAL STEADY-STATE EXPERIMENTAL DESIGNS
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and stress range of 13.8 to 110.3 MPa. Values of temperature and stress were

selected to be equally spaced in the variables log stress and l/T (note form in

Equation 2-1). This allowed for spacing of tests throughout the strain range of

interest as well as the temperature and stress range. Study of this design using

simulated data and regression techniques indicated that an empirical equation could

be derived from the resulting test data. Therefore, due to the applicability of

this design to regression analysis and its utilization of a relatively wide range

of temperature and stress levels, this experimental design was used in the

selection of supplemental steady state creep tests for L605, Titanium, and TDNiCr

alloys. In the case of Rene' 41, the orthogonal composite design (Figure 2-21(b))

was used, based on a larger spread in the applicable creep range (see Section 3.3.2).

Resulting test conditions for the basic matrix of supplemental steady-state tests

are presented in Table 2-4. These tests were conducted using thin gage specimens

tested in the longitudinal direction. To be consistent with the data base, L605,

Titanium, and TDNiCr specimens were tested in the as-received condition and Rene' 
41

specimens were tested with a heat oxidation coating obtained during 
the heat treat

process (solution treating in air at 1394
0 K followed by aging in air for 4 hours

at 1172 0 K). Some variations and additions were made to the test matrix in the case

of Rene' 41 and TDNiCr. Additional discussion on test conditions for each of the

alloys is presented in Section 3.

2.9.1.3 Selection of Tests for Evaluation of Other Variables. In addition to tests

on thin gage material specimens in the longitudinal rolling directions as specified

in Table 2-4, some tests were performed on each material to examine how material

thickness and rolling direction effect creep.

In addition, for L605, the effect of an emittance coating on creep was briefly

examined because panels will be coated to enhance emittance, which is essential for

the efficient radiation of aerodynamic heat.
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SPL T DTABLE 2-4
SUPPLEMENTAL STEADY-STTE CREEP TESTS - BASIC MATRIX

ALLOY DESIGNATION m 0

L605 Ti-6AI-4V RENE '41(3  TDNiCr >
TEST1 NOMINAL NOMINAL NOMINALTEST TEST( )  NTEMP STRESS NINA TEMP STRESS . TEMP STRESS TEMP STRESS -0NO. DIRECTIO THICKNESS OK MPa THICKNESS K MPa THICKNESS K M ICES OK MP c' nSan cm an _ cm
L 0.024 978 55.2 0.031 616 317.2 0.027 964 69.0 0.024 1089 62.1 r23 L 0.024 978 110.3 0.031 616 475.7 0.027 983 121.4 0.024 1089 110.3 m3 L 0.024 1053 27.6 0.031 658 165.5 0.027 1061 34.5 0.024 1200 34.5 z

4 L 0.024 1053 55.2 0.031 658 317.2 0.027 1061 69.0 0.024 1200 62.15 L 0.024 1053 110.3 0.031 658 475.7 0.027 1061 137.9 0.024 1200 110.36 L 0.024 1144 13.8 0.031 714 48.3 0.027 1111 69.0 0.024 1339 17.27 L 0.024 1144 27.6 0.031 714 165.5 0.027 1111 1014 0.024 1339 34.58 L '0.24 1144 55.2 0.031 714 317.2 10.027 1155 39.3 10.024 1339 62.1
9 L 0.024 1255 13.8 0.031 783 48.3 0.027 1155 121.4 0.024 1478 17.2 -10 L 0.024 1255 27.6 0.031 783 165.5 0.027 1180 69.0 0.024 1478 34.5 -<11 L - - -- - - 0.027 15& 55.2 0.024 1478 27.6 rn

SUPPLEMENTAL STEADY-STATE CREEP TESTS - EVALUATION OF ADDITIONAL VARIABLES
12 T 0.024 1053 55.2 0.031 658 317.2 0.027 1061 69.0 0.024 1200 62113 T 0.024 1144 27.6 0.031 714 165.5 0.027 1111 69.0 0.024 1200 110.3
14 T 0.024 1144 55.2 0.031 714 317.2 0.027 1155 121.4 0.024 1339 '62.1
15 L 0.064 1053 55.2 0.051 658 317.2 0.051 1061 69.0 0.051 I20 62.1
16 L 0.064 1144 27.6 10.051 714 '165.5 0.051 1111 69.0 0.051 1200 110.3
17 L 0.064 1144 55.2 0.051 714 317.2 0.051 1155 121;4 0.051 '1339 62.118 L 0.024 1053(2) 55.2 -

-19 L 0.024 1144( 27.6 - _
20 L 0.024 1144(2) 55.2 - - -

(I)TEST DIRECTION L= LONGITUDINAL; T= TRANSVERSE

(2)TESTED WITH HIGH EMITTANCE COATING. IN THIS CASE THE MATERIAL OXIDE WAS THE COATING MATERIAL.
(3)ALL RENE '41 SPECIMENS TESTED HAD OXIDE COATING.
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For each material three specimens were tested in the transverse rolling

direction using the thin gage material (same as the basic matrix). Three tests were

also conducted on each alloy, in the longitudinal rolling direction, 
using the thicker

gage material procured (see Section 2.4). In these six tests, stresses and tempera-

tures were selected as replicates of conditions in the basic matrix.

Three tests were conducted on pre-oxidized L605 specimens. The surface coat-

ing used was the materials' own oxide obtained by heating 
the specimen in air to

1339 0K, holding for 10 minutes and rapid cooling to room temperature. These were

the thin gage, longitudinal rolling direction specimens as tested in the 
basic matrix.

Test stresses and temperatures were replicates of conditions in the basic matrix.

2.9.2 CYCLIC TESTING

2.9.2.1 Data Requirements. This program is designed to provide a capability for

the prediction of creep deflections for the Space Shuttle TPS panels. Toward develop-

ing the capability, the following requirements were established for cyclic testing:

(1) To provide data for determining material cyclic creep properties. 
To meet

this requirement it is desirable to provide tests from which an empirical

equation could be obtained, if required. Comparison of cyclic tests

results with steady-state results is necessary in order to evaluate

possible applicability of steady-state data bases to the prediction of

cyclic creep.

(2) To provide data for investigation of creep accumulation (hardening) rules.

These rules are required both in analyzing axially loaded components,

where load or temperature changes with time, and in analyzing TPS panels

subjected to bending loads. It is important to note that stresses in a
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TPS panel, creeping under bending loads, will continuously change

because of stress redistributions, even when applied bending loads are

held constant.

(3) To provide data for investigating the applicability of resulting cyclic

creep equations and hardening rules to trajectories having different time

durations.

(4) To provide data for investigating possible effects of creep recovery.

(5) To provide data for establishing procedures applicable to analysis of TPS

components subjected to general trajectories (varying temperatures and.

stresses within a cycle). In connection with this requirement the effect

of atmospheric pressure on creep response was investigated.

(6) To provide cyclic creep response data for a typical Shuttle Mission tra-

jectory. In connection with the requirement, stress and temperature pro-

files were applied with the goal of obtaining creep strains of approximately

.5% after exposure to 200 simulated missions.

Cyclic tests to achieve these goals, were conducted under the following cate-

gories: (1) Basic Cyclic tests; (2) Variation of stress with cycle; (3) Variation

of time per cycle; (4) Creep recovery tests; (5) Idealized trajectory tests and

atmospheric pressure variation; (6) Simulated mission tests

For consistency of data, all cyclic tests were conducted using minimum gage

specimens in the longitudinal rolling direction. Except for the variation of

atmospheric pressure and simulated mission tests, all cyclic tests were conducted

at a constant atmospheric pressure of less than 1.3 Pa.
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2.9.2.2 Basic Cyclic Tests. The Basic Cyclic tests form the cornerstone of all

cyclic testing in this program because the data generated 
from these tests was used

to develop the empirical equations relating stress, temperature, and time to creep

strains. The profile used, shown in Figure 2-22, is a simplified trajectory 
consist-

ing of a rapid heat-up, hold at temperature for twenty minutes, 
then rapidly cooling

to approximately 422
0 K. The temperature profile was not taken to room temperature

(299 0K) because of cost and schedule consideration associated with 
an increased

testing time. After cool-down the same profile was repeated for a 100 cycle test

duration. Total time for each cycle was 55 minutes. The cycle time at maximum

temperature and load of 20 minutes was based on the Shuttle design trajectory

presented in Section 2.1 (See Figure 2-5).

Combinations of temperatures and stresses selected for each alloy were based

on the experimental design used in steady-state testing. This design was parti-

cularly attractive for cyclic testing due to the whiffle tree test mechanism 
used

(simultaneous testing of three specimens at one temperature 
and three different

stress levels as discussed in Section 2.8).

Stress and temperature levels were also selected with the goal of obtaining

100 cycle creep strains up to 0.5%. A summary of these Basic Tests is presented

in Table 2-5. More discussion of test selection for the Basic Cyclic Tests are

presented for each material in Section 3.

2.9.2.3 Variation of Stress with Cycle. Stress redistribution occurs and residual

stresses result within a beam due to creep. To include this effect in TPS creep

analysis, theories describing hardening behavior are employed. To provide data
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STRESS - TEMPERATURE

TEMPERATURE

STRESS

TIME @ TIME

= 20 MIN.

TOTAL
CYCLE TIME

= 55 MIN

FIGURE 2-22 STRESS AND TEMPERATURE PROFILES FOR BASIC CYCLIC CREEP TESTS

TABLE 2-5
BASIC CYCLE TESTS

TEST ALLOY DESIGNATION
NO. L605 RENE'41 Ti-6A1-4V TDNiCr*

TEMP. STRESS TEMP. STRESS TEMP. STRESS TEMP. STRESS
OK MPa OK MPa OK MPa OK MPa

128.9 104.1 399.0 124.3-
1 978 80.7 1111 68.7 658 299.2 1089 85.7

51.0 39.0 207.0
127.6 66.5 295.9 108.6-

2 1053 83.4 1155 57.0 714 192.0 1200 57.2
52.2 46.8 114.7 9.0
73.5 135.1 1297 60.3-

3 1144 +47.2 1072 103.4 783 83.6 1339
29.6 68.7 50.4 30.6
33.8 275.5 47.2 44.3-4 1255 20.6 1033 207.6 839 30.5 1478
13.2 142.0 19.7 16.3

*A TOTAL OF 26 TDNiCr SPECIMENS WERE TESTED TO BASIC CYCLE PROFILES THROUGH THIS RANGEOF STRESS SHOWN. FOR FURTHER DISCUSSION OF THESE TESTS SEE SECTION 3.4.
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for investigating this behavior, tests were conducted in which load (stress) level

was varied as a function of cycle. Histories for these tests are shown in Figure

2-23. In these tests, the cycle profiles were the same as used in basic cyclic

testing. Data obtained was used in conjunction with the Basic Cyclic Tests to eval-

uate the applicability of time or strain hardening theories to the individual alloys.

Stress levels for the history shown in Figure 2-23(a) were selected to duplicate

stresses in the Basic Cyclic Tests where possible, to allow direct comparison of

data. The increasing and decreasing stress level tests, illustrated in Figures

2-23(b) and 2-23(c), respectively, were also used to assess and verify hardening

behavior for Shuttle TPS conditions. These are representative of internal stresses

at beam stresses which will gradually change due to creep during entry.

2.9.2.4 Variation of Time Per Cycle. In the previous discussions, analysis has

been based on tests using trajectory profiles which have a time of 20 minutes at

maximum temperature and load. Analysis, however, must be applicable to trajectories

that have different times at maximum temperature and load.

To determine the effect of time at temperature for each material, a test (3

specimens) was conducted using a time of 10 minutes at maximum temperature and load.

Total time per cycle was therefore 45 minutes, shortened by 10 minutes from the

Basic Cyclic Test profile. Temperature and stresses for this test were the same as

for one of the basic cyclic tests for each material to allow comparison with the

basic cyclic results.

2.9.2.5 Creep Recovery Tests. These tests were designed to evaluate the effect of

"recovery" time between loadings and the effect of overlapping stress and temperature

profiles in time space. Two types of tests were conducted, as depicted in Figure 2-24.
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'TRAJECTORY PROFILES LOAD VARIATION WITH CYCLE

TEMP (T) TEMP (T1)

LOAD (L) L 2 LOAD (L1) L2

20IMINk..- 0 10 20 30 40 50 60 70 80 90 100
55 MINUTES CYCLES

TEMP (TI) TEMP (T1)

b LOAD (L1) L

--20 IN 0 10 20 30 40 50 60 70 80 90 100
CYCLES

55 MINUTES 

CYCLES

TEMP (T1) TEMP (TI)

LOAD (L1) L  LOAD

-'20 MIN i 0 10 20 30 40 50 60 70 80 90 100
CYCLES

4---- 55 MINUTES

FIGURE 2-23 TESTS FOR EFFECTS OF VARIATION OF STRESS WITH CYCLE
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The first test is a modified cyclic creep test in which 
the stress profile is

extended until the temperature has been reduced to well 
below the maximum temperature

(Figure 2-24(a)). In this manner, the possibility of "recovery" as a result 
of high

temperature and no stress is greatly reduced. 
Time at maximum temperature in this

test was 20 minutes. Temperature and load levelswere selected to match those 
of

one of the basic cyclic tests to allow direct data 
comparison. The purpose of the

second test was to investigate the effect of a time delay 
typical of that which

Shuttle vehicles will experience between missions. In this test, specimens tested

in one of the Basic Cyclic Tests were recycled after a time delay (approximately 
1

month). A schematic of this test is shown in Figure 2-24(b).

2.9.2.6 Idealized Trajectory Tests and Variation of Atmospheric 
Pressure. For

purposes of analysis, an actual entry trajectory was idealized 
by dividing it into

time increments for which stress and temperature are constant, 
as illustrated in

Figure 2-25. To establish guidelines for idealizing continuous stress and temperature

profiles, and to provide data for further evaluating the 
applicability of hardening

theories when load (stress) and temperatures are changed within 
a cycle, idealized

trajectory tests were performed.

The first type of test used a simplified two step stress profile 
as shown in

Figure 2-26(a). For this test, two load levels of ten minutes each were applied

sequentially to each specimen for the total trajectory 
time of twenty minutes. These

data allow for initial comparisons with predictions using hardening rules in

conjunction with the cyclic empirical creep equation (developed from 
Basic Cyclic

data).
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FIGURE 2-24 TESTS TO EVALUATE CREEP RECOVERY
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FIGURE 2-25. TYPICAL APPROACH FOR TRAJECTORY IDEALIZATION
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FIGURE 2-26 'IDEALIZED TRAJECTORY PROFILES
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The second type of test was conducted using idealizations of the projected.Shuttle

(load and temperature) missions. The number of steps in the idealized load trajectory

was varied between materials in some cases. A four-step load profile was used in

this test for L605 specimens, as depicted in Figure 2-26(b) and a three-step profile

was used for testing Rene' 41, titanium, and TDNiCr specimens as shown in Figure 2-26(c)

In addition, Rene' 41 specimens were tested using a two-level temperature distribu-

tion as shown in Figure 2-26(d). In general these tests.were conducted for 100 cycles.

All cyclic tests discussed to the point were conducted with a constant atmo-

spheric pressure of less than 1.3 Pa. To determine the effect of a changing

pressure, one idealized trajectory test for each material was repeated using the

simulated mission profile shown in Figure 2-27. This pressure profile is based on

altitude versus time for the Phase B Space Shuttle Orbiter trajectory presented in

Section 2.1.

2.9.2.7 Simulated Trajectory Tests. Testing of tensile specimens for each material

to a simulated Shuttle mission, load, temperature, and pressure profiles, shown in

Figure 2-27, completed the cyclic testing. Results of these tests provide data

for final verification of predictive capability for cyclic creep in tension.

2.10 COMPUTER PROGRAMS

2.10.1 SELECTION OF REGRESSION ANALYSIS COMPUTER PROGRAM FOR DATA ANALYSIS (BMDO2R)

In the development of an empirical equation using a large volume of data, the

use of regression analysis can be helpful. The computer program that was used in

this study is referred to as BMDO2R and is part of the Biomedical Computer Programs

developed by the Health Sciences Computing Facility, Department of Preventative

Medicine, University of California (Reference 25). The regression analysis programs

were designed to solve problems in medical research which involve data covering

several variables for each case or several observations on a few variables. Of the
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FIGURE 2-27 SIMULATED MISSION PROFILE
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regression analysis category of six programs, the stepwise regression program

(BMDO2R) was selected.

The program is capable of computing a sequence of multiple linear equations

in a stepwise manner. At each step, one variable is added to or deleted from the

equation. The variable that is added is the one that makes the greatest reduction

in the residual variance. In essence, the introduction of this variable produces

the greatest overall "F" ratio (F = MSR/MSV, where MSR is the mean square due to

regression and MSV is the mean square due to residual variation).

2.10.2 PROGRAM FOR TENSILE CREEP TRAJECTORY DATA ANALYSIS (CPCE)

The CPCE computer program-was written in order to allow rapid analysis of

cyclic tensile specimen trajectory test data. Creep strains are accumulated, based

on hardening theories in conjunction with empirical equations for the creep.

Program input is based on the type of trajectory profiles conducted. For tests

where stress is constant within each cycle but stepped as a function of cycle, input

includes time per cycle and number of cycles at each stress and temperature. For

tests where stress and temperature are varied within a cycle (idealized and simulated

trajectory tests), input includes time, temperature and stress of each step in the

trajectory and the number of cycles to be analyzed.

Analysis options are based on the time hardening and strain hardening theories

of creep accumulation (Reference 26). Five analysis predictions are calculated and

printed as functions of cycle and time within the cycle. The first two are time

hardening and strain hardening, respectively. The other three accumulate creep

strain increments for time or strain hardening, depending upon results of checks

made on the trajectory. These three approaches are: 1) use of time hardening when

stress increases and strain hardening when stress decreases; 2) use of time hard-

ening when effective time (in strain hardening) is less than actual time and strain
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hardening when effective time is greater than actual time; and 3) use of time

hardening when strain rate increases and strain hardening when strain rate decreases.

These three analysis approaches were formulated on the basis of initial analysis

of L605 cyclic test data.

This program not only allows for analysis of the cyclic data but will supple-

ment the TPS Beam prediction program for the analysis of TPS components subjected

to axial load only.

2.11 STATISTICAL CONSIDERATIONS

During this program, major areas of work included (1) the development of pre-

dictive equations for the description of creep behavior based on previously 
conducted

work as detailed in the literature, (2) the development of test matrices for the

defintion of test parameters for required creep tests (both steady-state and cyclic),

(3) the generation of new predictive equations for the description 
of steady-state

and cyclic creep behavior as experimentally observed during this program, and (4)

comparison of literature data with that obtained during this program. 
Each of these

above areas of interest required the use of statistical considerations. For example,

a very large number of equations are found in the literature which have been

developed over the years to describe the complex physical process of creep. In

addition, an infinite number of new relationships (or models) can be formulated

for the description of the dependent variable creep as a function of the independent

variables time, temperature, stress, structure, gage, etc. The use of regression

analyses permits a determination of which "classical" 
equation or new equation

best fits the previously existing and new creep data for each of the 
four

alloys studied during this program. Also, time and funding limited the number

of creep tests which could be performed during this program; 
therefore, statistical

methods were used to choose test parameter combinations and to identify the
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acceptable test data for establishing equations relating the test parameters and

the creep for each alloy investigated. The various test parameter combinations

are discussed separately under each of the four alloy discussions.

2.11.1 SELECTION OF EQUATIONS

The description of a creep equation involves the determination of the relation-

ship between the dependent variable, strain, and the independent variable such as

temperature, stress, time, thickness, and orientation. A convenient procedure for

determining this relationship is the use of multiple regression techniques. Two

parameters associated with this technique are (1) the multiple correlation coeffic-

ient, R, and (2) the standard error of estimate, S . The square of the multiple

correlation coefficient is defined as the ratio of the sum of squares due to

regression to the total sum of squares and is a measure of how well the fitted

equation explains the variation in the data [27]. The closer the value of R2 (or R)

is to 1, the better the equation will fit the data.

The standard error of estimate is defined as the square root of the residual

mean square and is an estimate of the variance about the regression. Therefore,

the precision of the estimate would be considered better the lower the value of Sy.

Accordingly, in the development of the various regression equations that were

examined during the program, emphasis was placed in obtaining equations which

resulted in large values of R and small values of S
y

The development and selection of each predictive equation generally followed

an iterative procedure as outlined below:

Step 1 - Select first order independent variables.

Step 2 - Using variables identified in Step 1, form new independent variables

for the regression analysis consisting of higher order terms and inter-

raction (first and higher order) terms. The computer program used to
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perform the stepwise regression procedure (BMD-02R) is discussed in

Section 2.10.2. A feature of the program is the capability of con-

veniently introducing new independent variables which may be inter-

action terms by simply including transgeneration cards.

Step 3 - Using the stepwise regression procedure, and the literature and/or

program data, determine the significant variables from the total

identified and constructed in Steps 1 and 2.

Step 4 - Review and record R and S for equation. If sufficient replication

exists in data bank, compare the computed Sy with the internal

estimate of error which is computed from the replicate observations.

Step 5 - Examine the residual of plots of the dependent variable vs. regressed

variables. The residual is the difference between what is actually

observed and what is predicted by the regression equation. If the

proper variables were selected, the residual plots will have a uniform

distribution with a zero mean. If the proper variables were not in the

equation, then the residual plots tend to take a shape which indicates

if the analysis should be weighted or a linear or quadratic term should

have been used. An in-depth discussion of the examination of residuals

and their significance is presented in Reference (27).

Step 6 - Repeat Step 3 using new'variables and compare R and Sy with previously

established values. Repeat Step 5 (i.e., review of plots of residuals)

and form additional independent variables, if required.

Step 7 - Plot predicted creep responses and compare with experimentally

observed creep curves with particular emphasis placed in identifying

discrepancies in fit and general form of the predicted surfaces.

Step 8 - If major discrepancies are observed in Step 7, modify and/or add new

independent variables and repeat from Step 3.
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It should be noted that creep strains below 0.05 percent and above 0.5 percent

were culled from the literature survey data base as were tests where the creep

stress level was above the 0.2% offset yield stress at temperature. As a result,

the predictive equations representing this data base are limited to this range.

The justification for removing the creep data below 0.05 percent was that a signifi-

cantly higher percent experimental error exists :in the measurement of these very low

creep strains, and that the standard error of estimate was being dominated by these

large observation errors. It should be noted that a weighted least squares analysis

could have been performed which would have accounted for the large variance in the

low strain ( 0.05) regime [27]. However, the complexity of such an approach in view

of the many data bases and variables was not considered practical.

Creep strains greater than 0.5 percent were removed to allow the model to more

exactly describe the creep response up to strain limits normally imposed on TPS

system. By excluding these higher strains, a small downward bias, as shown in

Figure 2-28 is introduced in the predictive equations. Likewise, a small upward

bias is introduced into the predictive equation at low strains as is also shown in

Figure 2-28. A study was made with respect to the effect of this truncating, and

the bias which is introduced was found to be negligible with respect to the goals

of this program.

In general, the regression analyses were conducted using the natural logarithm

of strain, lne, as the dependent variable. There are two primary advantages in

using logarithmic strain which are: (1) the model tends to come closer to minimiz-

ing the percentage deviations which is desirable in our application. This can be

shown as follows:

The residual value, 6,in our case can be expressed as

6 = n (r) (2-2)
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where Y is the observed value and Y is the fitted value. Also

6 Y
e (2-3)

and

e6 1 + 6 for small 6

and, therefore
. y

1+ 6 = (2-4)

As can be seen above, there is an inherent positive bias which results when regressing

on logarithms and the magnitude of the bias is a function of the value of 6. With the

standard error of estimates found during the program, this bias was very small.

Regressing on the strain rather than the logarithm of strain results in the follow-

ing expression for the residual value

6 y-y (2-5)

and with data such as observed for creep, the advantagesof regressing on logarithm

strain rather than strain are obvious.

(2) the model is forced to satisfy initial boundary value considerations. For

example, the model

in e = A + Al In + A2 In t (2-6)

when transformed back' to strain space becomes

e = e Ao uA1 tA2 (2-7)

and if a or t equal zero, the strain is forced to also equal zero. Note that the

in c model can be used directly provided care is taken to account for .the signs of

the coefficients.

Finally, as is discussed in detail in Appendix G, an alternative approach to

the generation of predictive equations was investigated during this program. This

approach utilized finite difference techniques to minimize the effect of data

dependency within individual tests since the regression equation is developed from
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the difference in consecutive strain values rather than in their magnitude. 
Rather

than being randomly distributed around the predicted curve, the data tend to run

in strings of consecutive strains and this fact results in conventional regression

techniques (e.g. least squares analysis) giving a consistent but not maximum likli-

hood estimate of the creep response. The two estimates converge if enough data sets

are available.

2.11.2 DUMMY VARIABLE METHODS

Comparison in creep response surfaces computed from the literature search 
data

bases were made with those computed from supplemental steady-state tests conducted

during the program. In addition, comparisons were made between the steady-state and

cyclic creep surfaces. One method used to make these comparisons was the dummy

variable technique.

The regression model which incorporates the use of dummy variables is
N

y = E X + i (ZX) (2-8)
i=o i i i

where ai and Bi are regression coefficients; X are the N independent variables

(Xo has value of Unity) and Z is assigned values as follows:

Z = 0 if the observation is from data set A

Z = 1 if the observation is from data set B

If two data bases are statistically identical, the Bi's will be statistically

insignificant and the response is described by y =F ai Xi for all cases. In the
i=o

event the data bases are different, some 6.'s will have significant values, and, as

a result of the presence of the Bi terms, the equation becomes
N

y = Ki Xi (2-9)
i=o

where
Ki = i for the case Z = 0

Ki = ai+8i for the case Z = 1 and the term 8i is significant

Ki = ai for the case Z = 1 but the ai term is not significant
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In summary, the dummy variable method used in conjunction with the BMD-02R

regression analysis program provides an efficient and convenient technique for the

comparison of data and for the determination of significant differences, if any,
between response surfaces from different data bases.
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3.0 TEST AND DATA ANALYSIS

Presented in this section, by alloy, are the results of the literature survey

and experimental portion of Phase I alloy with the analysis of the results.

3.1 L605 - RESULTS OF TESTS AND DATA ANALYSIS

3.1.1 STEADY STATE L605 DATA BASE

3.1.1.1 Literature Survey. A review of the literature revealed that Reference 15

contained enough data to develop a data base. This reference contained the results

from 59 creep tests performed on various gages manufactured from the same heat of

material. This data base is presented in Appendix C-l.

3.1.1.2 L605 Data Base Analysis. Figures 3-1 and 3-2 are graphical representations of

stress, time, and temperature ranges for data base longitudinal and transverse tests

respectively. Shaded areas indicate the ranges of stress, time, and temperature for

which creep strain data less than 0.5% are available in the data set. At high

temperatures (1144 and 12550K) transverse specimens were generally tested for longer

times than the longitudinal specimens. In working with this data base it is important

to recognize that empirical equations based on this data base are applicable only for

the range of data shown.

Data for five tests were removed from the data base. Two were tests at 9220 K

(206.8 MPa on 0.013 cm and 248.2 MPa on 0.102 cm). These tests had very high initial

strain values (0.2% creep in 0.1 hour) which resulted in inconsistency between these

tests and others of the same temperature and similar stress levels. Data for three

additional tests were removed from the data base because the test points were erratic.

Creep strains less than 0.05% were removed from the data base in an effort to weight the

data in favor of the higher creep strains in the regression analysis (see Section 2.11.1).

Since the L605 data base tests were at temperatures greater than one half of the

the melting point, the following high temperature creep model was used as the basis

for obtaining an empirical equation.

3-1

MCDONNELL DOUGLAS ASTRONMAUTCS COMPAb V - EAS



VXIv

.VV C)

I--

LiiJ

CD

WAI..

C)C
C_ N-1

uj.

ouuj



'"PREDICTION OF CREEP IN PHASE I NAS-1-11774
21 METALLIC TPS PANELS SUMMARY REPORT

100
pa,'350

FIGURE 3-2 L-605 DATA RANGE - TRANSVERSE ROLLING DIRECTION
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=f [a, T, t, S, exp ( - Q/RT)] (3-1)

Functional forms for stress (a) and time (t) were based on References 24 and 25.

Reference 24 showed that for low and moderate stresses, typical of the data base

tests, the effect of stress on the rate of deformation in metals obeys the power

stress law, = f (an).

Based on Reference -26, the dependency of high temperature creep on time can

be expressed by the Andrade power function, c = f'(tk).

Because processing can effect crystal structure, dispersion of precipitates, and

grain size (referred to as structure factors in References 26 and 28) in sheet

products, one way to quantify this relationship is to include material thickness

(4) in the creep equation. The functional form selected was E = f (q)m

Based on these functional relationships, the following equation format was

obtained.

Al
in e = A + n Ino + k In t + m in + /T (3-2)

where Ao, n, k, m, Al are constants

Using this form, the following equation was obtained for the L605 data base

In e = 4.84549 + 2.1288 In a + .48945 In t - .29601 In - 19.50143 (1/T) (3-3)

where E = creep strain, %

a = stress, MPa

t = time, hours

= material thickness, cm

T = Temperature, OK/10000

The standard error of estimate (Sy), associated with this equation, based on

the natural logarithm of strain is 0.2761 and the multiple correlation coefficient

is 0.8913. The residual plots (in Eactualc n calculated vs. variable) for this

equation are shown in Figure 3-3. Data base creep strains are plotted against pre-

dicted values in Figure 3-4. The + 1.96 S scatter band is also shown. This scatter
-- y

band represents back transformed space (c) rather than the transformed space that the
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regression was performed on (lne). Although creep strains less than 0.05% were not

used in its derivation, the equation is capable of predicting these low strains

because the required boundary conditions of zero creep strain at zero stress and

time are satisfied.

Other equation forms which contained interaction terms of t, a and T were

examined through the use of the BMD-02R computer program, but were rejected in favor

of Equation 3-3 because the improvement in curve fit was not sufficient to warrant

using an equation with more complex terms.

3.1.2 L605 SUPPLEMENTAL STEADY-STATE TESTING

3.1.2.1 L605 Supplemental Steady-State Test Matrix. A total of twenty-three steady-

state creep tests were performed. The conditions for these tests are summarized

in Table 3-1. From this table it can be seen that in addition to the ten tests

selected in the basic experimental design, four tests were replicates; three were

tested in the transverse direction to investigate the effect of specimen orientation

on creep; three tests were run using specimens with a pre-oxidized surface layer

(emittance coating) to determine the effect of this layer on creep; and three tests

were performed on 0.064 cm thick material rather than .025 cm. material to evaluate

the effect of thickness on creep.

The pre-oxidized surface layer was obtained by heating the specimens in air

to 13390K, holding for 10 minutes and rapid cooling to room temperature.

Raw data obtained for these twenty-three tests is presented in Appendix C-2.

Included in this appendix are the elastic strains which were determined at the

start and conclusion of the test.

The steady-state test matrix design, shown in Figure 2-21(d) allowed testing

over the temperature range of 978 to 12550 K and a stress range of 13.8 to 110.3MPa.

Values of temperature and stress are equally spaced in the variables log stress and 1
T.
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TABLE 3-1

L605 SUPPLEMENTAL STEADY-STATE TESTS

BASIC TEST MATRIX

TEST MATERIAL ROLLING MATERIAL GAGE TEMPERATURE STRESS
SPECIMEN DIRECTION CM INCHES K, F MPa KSI

L31L LONGITUDINAL 0.025 0.010 978 1300 110.3 16.0
L42L LONGITUDINAL 0.025 0.010 978 1300 110.3 16.0
L96L LONGITUDINAL 0.025 0.010 978 1300 55.2 8.0
L50L LONGITUDINAL 0.025 0.010 978 1300 55.2 u.
L39L LONGITUDINAL 0.025 0.010 1053 1435 110J 16.0
L95L LONGITUDINAL 05 I)10 1053 1435 55.2 8.0
L73L LONGITUDINAL 0.025 0.010 1053 1435 27.6 4.0
L27L LONGITUDINAL 0.025 0.010 1144 1600 55.2 8.0
L58L LONGITUDINAL 0.025 0.010 1144 1600 55.2 8.0
L93L LONGITUDINAL 0.025 0.010 1144 1600 27.6 4.0
L24L LONGITUDINAL 0.025 0.010 1144 1600 13.8 2.0
L54L LONGITUDINAL 0.025 0.010 1255 1800 27.6 4.0
L48L LONGITUDINAL 0.025 0,010 1255 1800* 13.8 2.0
L29L 'LONGITUDINAL 0.025 _ 0.010 1255 1800- 13.8 2.0

L605 SUPPLEMENTAL STEADY-STATE TESTS

EVALUATION OF ADDITIONAL VARIABLES

TEST SPECIMEN MATERIAL ROLLING MATERIAL GATE TEMPERATURE STRESS
DIRECTION CM JINCHES oK oF MPa KSI

117T TRANSVERSE 0.025 0.010 1144 1600 55.2 8.0
LlT TRANSVERSE .0.025 0.010 1144 1600 13.8 2.0
LI8T TRANSVERSE 0.025 0.010 1053 1435 55.2 8.0
L01L 'LONGITUDINAL 0.064 0.025 1144 1600 55.2 8.0
L03L LONGITUDINAL 0.064 0.025 1144 1600 27.6 4.0
L02L LONGITUDINAL 0.064 0.025 1053 1435 55.2 8.0

L45L(PREOXIDIZED) LONGITUDINAL 0.025 0.010 1144 1600 55.2 8.0
L78L(PREOXIDIZED) LONGITUDINAL 0.025 0.010 1144 1600. 27.6 4.0
L23L(PREOXIDIZED) LONGITUDINAL 0.025 0.010 1053 1435 55.2 8.0
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3.1.2.2 Test Data Evaluation.- Basic Test Matrix. Data plots are presented in

Figures 3-5 through 3-8 for the ten basic tests and four replicate tests conducted

on .025 cm gage specimens in the longitudinal rolling direction. These data were

for tests conducted at 9780K, 10530K, and 11440 K, and 12550 K respectively. Data

was obtained below 5 hours and is presented in Appendix C-2, however, for clarity

these points are not shown in the Figures. Comparison of these plots indicates

consistency in the data with respect to increasing strain with increasing stress

and temperature. Comparison of replicate tests at 9780K, 11440 K, and 12550K

(Figures 3-5, 3-7, and 3-8 respectively) indicates close agreement. Replicate

tests (specimens L58L and L27L at 11440K (Figure 3-7) show the largest creep strain

variation of .16% (.46% to .62% for the specimens respectively) at 60 hours. The

largest variation in the other three replicates is .03% strain at 60 hours

(specimens L50L and L96L).

The following equation was developed using data obtained from the hand faired

curves of the basic supplemental tests 1 through 10. The data consisted of strain

values taken at times of 1, 2, 5, 10 and 10 hour increments thereafter to the end

of the individual test, from hand faired curves.

Ine = -3.92495 - .00237t + .45047 In t + 1.03087 Ina (3-4)

-4.14348 (1) + .11052 aln T + .0000406 (T a t)

The standard error of estimate (S ) and multiple R, computed for this equation

are .1499 and .9860, respectively. The residual plots (In Eactual -In scalculated

vs. variable) for this equation are shown in Figure 3-9.

The interaction terms in this equation (aln T and Tot) were found to signifi-

cantly reduce S for the data since equations initially developed without these

terms had Sy values in the range of .25 to .40.

Typical comparisons of creep strain predictions (based on Equation 3-4) with

test results are shown in Figure 3-10 and 3-11.
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S- 110.3 MPA -L42L
& 55.2 MPA L96L
0[ 55.2 MPR -L5OL
* 110.3 MPA -L31L

- - - HAND FAIRED CURVE

TIME-MOURS

FIGURE 3-5 L5-SUPPLEMENTARY STEADY-STATE CREEP TESTS AT 978oK

t -- 27.6 MPA -L73L
. 55.2 MPA -L95L
[ 110.3 MPA -L39L

CL

0 20 40 60 8 10o 120 140 160 IS0

TIME-HOURS

FIGURE 3-6 L605 SUPPLEMENTARY STEADY-STATE CREEP TESTS AT 18530 K
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S_ 0 55.2 MPA -L27L
A 27.6 MPA -L93L
0 13.8 MPA LZ4L
* 55.2 MPA -L58L

,9- - miiO FAIRED CURVE

TIME-HOURS

FIGURE 3-7 L605 SUPPLEMENTARY STEADY-STATE CREEP TESTS AT 1144oK

O( 13.8 MPA L29L
D 13.8 MPFA L48L

-- 27-6 MPA L54L --
SHAND FAIRED CURVE

1- I
I-

I r

0 20 40 60 80 100 120 140 160 16O

TI ME-HOURS

FIGURE 3-8 L605 SUPPLEMENTARY STEADY-STATE CREEP TESTS AT 12550K
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FIGURE 3-9 RESIDUAL PLOTS OF L605 SUPPLEMENTAL EQUATION (3-4)
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0 110.3 MIPA -L42L-
0 110 3 MPA -L31LI

S- - HAND FAIRED CURVE

PREDICTED STRAIN
+1.96 S,

S-PREDICTED:
, .I "STRAIN

-- ,PREDICTED STRAIN
-1.96 Sy

20 40 60 "i 1 0 120 140 160 lea

TI ME-MOURS

FIGURE 3-10 COMPARISON OF L605 CREEP STRAIN PREDICTIONS WITH
TEST RESULTS AT 978 oK AND 110.3 MPa
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s +1.96 S 0 55.2 MPR -L27L

_ 55.2 HPR -L58L

o/
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3.1.2.3 Effects of Gage. Presented in Figures 3-12 through 3-14 are comparisons

of creep strain data for supplemental tests conducted on .064 cm specimens with

corresponding data for .025 cm specimens. Also included on the plots are the

+ 1.96 Sy data bands based the standard error for Equation 3-4. In each of the

three comparisons, the .064 cm specimens produced significantly lower creep strains

than the .025 cm specimens.

3.1.2.4 Effect of Material Rolling Direction. Presented in Figures 3-15 through

3-17 are comparisons of creep strain data for supplemental tests conducted on trans-

verse rolling direction specimens with corresponding data conducted on longitudinal

rolling direction specimens. Also included on the plots are the + 1.96 Sy data

bands. Although the transverse test strain is less than the longitudinal test

strain in two of the cases (Figures 3-15 and 3-16), it is greater than the third

longitudinal test strain case (Figure 3-17). Therefore results as to the effect

of this variable appear to be inconclusive.

3.1.2.5 Effect of Pre-Oxidation. Comparison of creep strain results for three

specimens with a pre-oxidation coating with corresponding specimens having no coating

are shown in Figures 3-18, 3-19, and 3-20. In the three cases the pre-oxidized

specimen crept less than (Figure 3-18), equal to (Figure 3-19), and faster than

(Figure 3-20), the corresponding non-pre-oxidized specimen respectively. Therefore,

it is concluded that the pre-oxidation does not appear to significantly effect the

specimen creep response.

3.1.3 COMPARISON OF L605 STEADY-STATE DATA BASE AND SUPPLEMENTAL TEST RESULTS

The following empirical equation was developed, using the dummy variable tech-

nique, for purposes of comparing the L605 data base and supplemental test data.

3-15
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_ 0L PA LSL

O 552PA 1.2L

e IAND FAIRED CURVE

.10 .

S60 80 s1 120 140 150 10 1
TE -HOURS

FIGURE 3-12 EFFECT OF GAGE ON L605 CREEP AT 1053oK AND 55.2 MPa

O 27.6 MPR L93L
[0 27.6 MPF LO3L
7 AINsD FAIRED CURVE

c L

- Cl
S 20 4 6 80 100 120 140 160 10

TIME-HOURS

FIGURE 3-13 EFFECT OF GAGE IN L605 CREEP AT 1144 0 K AND'27.6 MPa
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.70

RL27L;(0.025 cm)

L58L,(0.025 cm)

.5_ 1.96 Sy

LO )L (0.064 cm.)

I-

U.11

.3:

mmoiHAND fAIRED CURVE

I ' 40 60 80 100

TIME - HOURS

FIGURE 3-14 EFFECT OF/GAGE ON L605 CREEP AT 11440K AND 55.2 MPa
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0 55.2 MPR L95L
C] 55.2 MPR L18T

HAo FATIRED CURVE.

, LONIGITUDINAL

r ;

CL

LJ

TRAWSVERE

0 20 40 60 60 100 120 14C 160 to

TIME-HOURS

FIGURE 3-15 EFFECT OF ROLLING DIRECTION ON L605 CREEP AT 1053 0K AND 55.2 MPa

O 27.6 MPR LllT
0 27.6 MPA L93L
___ - HAND FAIRED CURVE

0

L.

• 40 60 s o 10 10 140 160 INO
TIME-HOURS

FIGURE 3-16 EFFECT OF ROLLING DIRECTION ON L605 CREEP AT 1140oK AND 27.6 MPa
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.70 L17T-TR1.96 S TRANSVERSE

L27L

.60 
LONGITUDINAL

L58L

.50

.40

I-

.20

HAND FAIRED CURVE

01 20 40 60 80 100

TIME - HOURS

FIGURE 3-17 EFFECT OF ROLLING DIRECTION ON L605 CREEP AT 11440 K AND 55.2 MPa
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-D 55-2 MPR L95L
1] 55.2 MPR L23L

HAND FAIRED CURVE

_ i

TIME-HOURS

FIGURE 3-18 EFFECT OF PREOXIDATION ON CREEP OF L505 AT 1053°K AND 55.2 MPa

( 27.6 MPI L78L
n 27.6 PP L93L

- HAND FAIRED CURVE

I-

LO

I I

TIE--HOURS

FIGURE 3-19 EFFECT OF PREOXIDATION ON CREEP OF L605 AT 144053 0K AND 5527.8 MPa
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FIGURE 3-20 EFFECT OF PREOXIDATION ON CREEP OF L605 AT 1144°K AND 55.2 MPa
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Ine = 2.553 + .336 Int + 1.145 (Ino -1.931) - .243 (In4 -.932) (3-5)

-9,691 (1/T) + .081 Z(lnt) + .327 Z (Ina - 1.931)

+ .246 Z (In -.932)

where E = creep strain, %

t = time, hours

a = stress, MPa

T = Temperature, OK/1000

= material thickness, cm

0 , Data BaseZ =
1 , Supplemental Data

Because the Z terms are significant in fitting the data, it is concluded that

there is a difference between the supplemental test data and the data base. It is

of interest to note from the equation that for the supplemental data (Z = 1) the

thickness terms cancel each other. This is because only the basic matrix of data

(.025 cm) were used in the comparison.

There is a difference in the manufacturing process between thin gage (<.064 cm)

and thicker gage material, based on contact with the material supplier. This pro-

cessing difference, which occurs at approximately .063 cm, appears to be the cause

of variations in creep response attributed to gage in both the data base (Section

3.1.1.2) and the supplemental tests (Section 3.1.2.3).

To investigate this, comparisons of data were made as shown in Figure 3-21

for 30 and 60 hours. The comparison in the figure is for tests at 1144
0K

where close agreement in the data base and supplemental data were found.

These plots indicate that the data falls into two groups; (1) data for tests

conducted are .013 cm and .025 cm specimens and, (2) data for tests conducted on
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30 HOURS 60 HOURS

vO

0.10

w

V LITERATURE DATA 0.013 cman
SUPPLEMENTAL DATA 0.025,cm
SUPPLEMENTAL DATA 0.069 cm

O LITERATURE DATA 0.102 cm
n LITERATURE DATA 0.203 cm

0.01 I
10 100 10 100

STRESS - MPa STRESS - MPa

FIGURE 3-21 COMPARISON OF CREEP DATA FOR THICKNESS 4'0:063,AND 0.063 cm
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.064 cm, .102 cm., and .203 cm specimens. Therefore, the "gage" effect appears to

be a step difference attributable to manufacturing processing rather than a con-

tinuous gage effect as implied in the literature survey equation (Equation 3-3).

3.1.4 L605 BASIC CYCLIC TESTS

3.1.4.1 Basic Cyclic Test Matrix. Four 100 cycle tests (3 specimens per test)were

conducted on .025 cm gage specimens to form the basic cyclic test matrix from 
which

an empirical equation for cyclic creep can be derived. Each of the specimens was

tested in the longitudinal rolling direction. Combinations of stress and tempera-

ture for these twelve specimens were based on the box type of experimental design

(see Section 2.9.1.1) as shown in Figure 3-22. and listed in Table 3-2. The test

temperatures of 978, 1053, 1144, and 1255
0K are the same as those used for steady-

state testing to allow direct comparison of results. The specific stress levels

attained in testing, as listed in the table, are 100 cycle averages obtained using

the whiffle tree test fixture (Section 2.8.1). The time at load for each cycle

was 20 minutes, and total cycle time was 55 minutes including heat up and cool

down portions of the profile.

This portion of the cyclic tests are designated as L605 cyclic tests 1 through

4. Data are presented in Appendix C-3.

3.1.4.2 Test Results and Analysis. Cyclic creep strain results for the twelve

specimens in test 1 through 4 are presented in Figures 3-23 
through 3-26.

The following equation was developed using data obtained from the hand faired

curves of these twelve cyclic tests. This data consisted of strain values taken at

5 cycle intervals from the hand faired curves. Creep times were the accumulated

cycle time at maximum load and temperature, therefore for the 
basic cycles the time

was .33 hrs/cycle or 1.67 hrs/5 cycles.

In c = -2.89413 - .01743t + .54892 In t + 1.31015 Ina -6.66548 (1/T) (3-6)
cy

+ .19131 a In T + .00021 (Tat).
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345 50

207

0.5% CREEP
138 -100 HOURS

180.5% CREEP

10 HOURS

,o .u/s - ,

34.5 - 5
0.1% CREEP

~27.6 100 HOURS

TEST POINTS
20.7

13.8

0.8 0.9 1.0 1.1
vT, (T= OK 1000)

FIGURE 3-22 L605 BASIC CYCLIC EXPERIMENT DESIGN

TABLE 3-2
L605 BASIC CYCLIC TEST MATRIX

TEST TEMPERATURE STRESSTEST NO. SPECIMEN
OK OF MPa ksi

1 L44L 978 1300 129.0 18.7
L52L 52.2 7.4
L57L 80.7 11.

2 L36L 1053 1435 128.0 18.5
L76L 52.2 7.57
L01IL 83.4 12.1

3 L53L 1144 1600 29.6 4.30
L61L 47.2 6.85
L37L 73.5 10.7

4 L65L 1255 1800 33.8 4.90
L70L 13.2 1.92
L91L 20.5 2.98
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0.201
O SPECIMEN L44L, STRESS = 128.9 MPa

3 SPECIMEN L52L, STRESS = 51.0 MPa
0.1 0.16 HAND FAIRED CURVE ,

FU PREDICTED CURVE
(BASED.ON EQUATION 3-6)

S0.12

0.08

00 25 50 75 100
CYCLES

FIGURE 3-23 L-605 BASIC CYCLIC CREEP TEST AT 978oK

2.4 1
O SPECIMEN L36L, STRESS = 128.0 MPa
o SPECIMEN L01L, STRESS = 83.4 MPa

2.0 ,6 SPECIMEN L76L, STRESS = 52.2 MPa

EXPERIMENTAL CURVE (HAND FAIRED)

--. PREDICTED CURVE

1 1.6 - 1(BASED ON EQUATION 3-6)I-
C-

n 1.2-

0.8

O 25 50 75 100
CYCLES

FIGURE 3-24 L-605 BASIC CYCLIC CREEP TEST AT 1053 0K
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o SPECIMEN L37L, STRESS = 73.5 MPa
A SPECIMEN L61L, STRESS = 47.2 MPa

2.01: O SPECIMEN L53L, STRESS = 29.6 MRi
-EXPERIMENTAL CURVE (HAND FAIRED) -

- - - - PREDICTED CURVE
1.6 (BASED ON EQUATION 3-6)1

1.2

0.8 SPECIMEN L5L, STRESS = 33.8 MPa

00 25 50 75 100
CYCLES

FIGURE 3-25 L-605 BASIC CYCLIC CREEP TEST AT 11440K

O SPECIMEN L65L, STRESS = 33.8 MPa
0 SPECIMEN L91L, STRESS = 20.5 MPa
A SPECIMEN L70L, STRESS = 13.2 MPa

EXPERIMENTAL CURVE (HAND FAIRED)
- . - PREDICTED CURVE (BASED ON EQUATION 3-6)

0.8

0.2

0 25 50 75 100
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FIGURE 3-26 L-605 BASIC CYCLIC CREEP TEST AT 12550K
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FIGURE 3-27 RESIDUAL PLOTS OF L605 CYCLIC EQUATION (3-6)
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The standard error of estimate (S y) and multiple R computed for this equation 
are

.1711 and .9904, respectively. The residual plots (ln E actual -ln ccalculated vs.

variable) for the equation are shown in Figure 3-27.

Several equation forms which did not involve interaction terms were also

explored. Equations containing interaction terms provided better fit of the data

than those which did not contain interactions terms. Material gage is not a variable

since all the data is for .025 cm specimens. The low value for the standard error

of estimate and the high value for multiple R in the equation indicates that the

empirical relationship, shown in this equation, describes the experimentally

observed L605 cyclic creep response very well. This is illustrated in Figures

3-23 through 3-26 where the cyclic creep responses predicted by this Equation are

shown together with the experimentally observed data for each of the Basic Cyclic

Tests.

It should be noted that the cyclic creep equation (Equation 3-6) is only valid

within the range of time, temperature, and stress values from which it was computed.

The temperature range was 978 0K to 12550K. The stress range was 13.2 to 128.9 MPa.

The time range was 0 to 33 hours. Outside of the data range invalid predictions may

occur especially for times greater than 33 hours. Because of the functional form of

the cyclic creep equation (Equation 3-6) calculated strains decrease with increasing

times greater than 33 hours. This trend can be seen in Figure 3-28.

3.1.5 COMPARISON OF L605 CYCLIC AND SUPPLEMENTAL STEADY-STATE DATA

3.1.5.1 Test Data Comparison. Presented in Figures 3-29 and 3-30 are comparisons

of L605 cyclic and steady-state data for times of 15 hours and 30 hours respectively.

In this comparison the cyclic time was the accumulated time at maximum load and

temperature (i.e., 100 cycles = 33.3 hours). Based on the close agreement in these

data sets, it is concluded that no significant difference exists.
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3.1.5.2 Microstructure Comparison. Samples representing steady-state and cyclic

creep conditions were examined for microstructural features. The samples selected

for examination were those that exhibited strains less than 0.5% at the end of the

test. The results of this examination are presented in Figures 3-31, 3-32, and

3-33. From these figures it can be seen that there are no discernible differences,

at 500X magnification, between the steady state and cyclic microstructures at any

of the temperatures examined.

For comparison purposes the "as-received" microstructures are shown in Figure

3-31. Comparison of the as-received microstructure of L605 with that of the creep

tested specimens shows that significant precipitation has occurred at 978 0 K, these

precipitates are located only at the grain boundaries; according to Reference 29,

these precipitates consist primarily of Laves phases and a Co-W intermetallic com-

pound. At 11440K and 12550K, both grain boundary and matrix precipitation has

occurred; these precipitates consist primarily of Laves phases and metal carbides.

The carbides are primarily M2 3C6, at 1144
0 K, whereas at 12550 K, M6C predominates.

Examination of these photomicrographs also shows that testing at 11440K and 12550K

has resulted in a depletion of carbides below the specimen surface. This subsurface

layer is caused by preferential oxidation of less-noble alloying elements such as

chromium.

3.1.6 L605 CYCLIC TESTS FOR EVALUATION OF ADDITIONAL VARIABLES

Described in Section 2.9.2 were a series of tests designed to study the .effect

of time per cycle, atmospheric pressure, and time between cycles on the cyclic

creep of materials (creep recovery). This section discusses the results of those

tests on L605. Raw creep data generated in these tests are presented in Appendix C-3.

3.1.6.1 Effect of Time Per Cycle. In the analysis of creep in a metallic TPS beam,

the trajectory is idealized by dividing it into increments of time for which stress
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ALLOY: L-605

CONDITION: AS-RECEIVED

ETCHANT: HC1, H202 (ELECTROLYTIC)

MAG: 500X

ASTM GRAIN SIZE 3 /

THICKNESS 0.025 cm

ALLOY: L-605 ...

CONDITION: TESTED (CYCLIC) "
APPLIED STRESS: 80.7 MPa ,

TEST TEMPERATURE: 978 0K
EXPOSURE TIME: 100 CYCLES
ETCHANT: HCI, H202 (ELECTROLYTIC)
MAG: 500X
ASTM GRAIN SIZE 3 /
THICKNESS 0.025 cm

SPEC. NO. L57L

ALLOY: L-605
CONDITION: TESTED (STEADY STATE)
APPLIED STRESS: 55.2 MPa
TEST TEMPERATURE: 978 0K
EXPOSURE TIME: 55 HOURS
ETCHANT: HC1, H202 (ELECTROLYTIC)
MAG: 500X
ASTM GRAIN SIZE 3
THICKNESS 0.025 cm .

SPEC. NO. L96L

FIGURE 3-31 MICROSTRUCTURE OF L-605 BEFORE AND AFTER CREEP EXPOSURE AT 9780K
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ALLOY: L-605
CONDITION: TESTED (STEADY STATE)
APPLIED STRESS: 55.2 MPa
TEST TEMPERATURE: 11440K
EXPOSURE TIME: 66 HOURS
ETCHANT: HCI, H202 (ELECTROLYTIC)
MAG: 500X
ASTM GRAIN SIZE 3
THICKNESS 0.025 cm

SPEC. NO. L27L

ALLOY: L-605
CONDITION: TESTED (CYCLIC)
APPLIED STRESS: 47.6 MPa
TEST TEMPERATURE: 11440K
EXPOSURE TIME: 100 CYCLES
ETCHANT: HCI, H202 (ELECTROLYTIC)
MAG: 500X
ASTM GRAIN SIZE 3 i
THICKNESS 0.025 cm

SPEC. NO. L61L

FIGURE 3-32 MICROSTRUCTURE OF L-605 AFTER CREEP EXPOSURE AT 11440K
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ALLOY: L605
CONDITION: TESTED (CYCLIC)
APPLIED STRESS: 20.7 MPa
TEST TEMPERATURE: 12550K
EXPOSURE TIME: 100 CYCLES
ETCHANT: HC1, H202 (ELECTROLYTIC)
MAG: 500X
ASTM GRAIN SIZE 3 ''

THICKNESS 0.025 cm

SPEC. NO. L91L

ALLOY: L-605
CONDITION: TESTED (STEADY STATE)
APPLIED STRESS: 27.6 MPa
TEST TEMPERATURE: 1255 0K
EXPOSURE TIME: 50 HOURS
ETCHANT: HC1, H202 (ELECTROLYTIC)
MAG: 500X
ASTM GRAIN SIZE 3
THICKNESS 0.025 cm

SPEC. NO. L54L

FIGURE 3-33 MICROSTRUCTURE OF L-605 AFTER CREEP EXPOSURE AT 12550K
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and temperature are considered constant. Since the length of time of these incre-
ments will vary with the trajectory, the effect of time at temperature and load must
be evaluated. To determine the magnitude of this effect, a test designated as L605
Cyclic Test #8 was performed using a cycle with a maximum time at temperature and
stress of 10 minutes. A comparison of the data from this test with the data from
the Basic Cyclic Test Number 3 (Figure 3-24) which had a maximum time at tempera-
ture and load of 20 minutes, is presented in Figure 3-34. Each of the data points
in this figure represents a total cycle time at load and temperature (11460 K)

of 16.67 hours (100 cycles at 10 minutes/cycle for Test #8 and 50 cycles at 20

minutes/cycle for Test #3). From this figure it appears that the cyclic creep

strains are a function of total time at load and temperature only, for cycle times

typical of Shuttle entry trajectories. Therefore, application of the L605 basic

cyclic empirical creep strain equation to trajectories of varying time appears

warranted.

3.1.6.2 Effect of Atmospheric Pressure. Cyclic tests 12 and 13 were replicate
idealized trajectory tests, except that a simulated atmospheric pressure profile was
applied in test 13 while in test 12 the pressure was maintained constant at <1.3Pa
torr. Comparison of creep strain results for the corresponding specimens in these
tests are shown in Figure 3-35. Based on the comparison, it cannot be concluded
that atmospheric pressure has any effect on creep strain response.

Also shown in Figure 3-35 are creep strain results for actual stress and
temperature profiles. These results will be discussed in Section 3.1.8.1.

3.1.6.3 Effects of Time Between Cycle. Tensile specimens L37L, L61L, and L53L
were tested to 100 cycles at 11440K (cycle test 3) as part of the basic cyclic

tests for L605. Several weeks subsequent to the completion of this test, the
specimens were tested for an additional 50 cycles (cyclic test 14). Creep strain

results are shown in Figure 3-36. Comparison of creep rates at the end of test 3
with those obtained in test 14 shows no change. Therefore, room temperature recovery
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1.4

o L605 TEST
100 CYCLES AT 10 5IOWUTES/CYCLE

O L605 TEST 3
50 CYCLES AT 20 MINUTES/CYCLE

I 0.8

0.6

0.4

0.2

a 20 40 60 go

STRESS MPa

FIGURE 3-34 L605 CYCLIC CREEP STRAINS AS FUNCTION OF TOTAL TIME AT LOAD
0.4 1 1 1

- -- - - - - SPECIMEN 6L (L605 TEST 12), IDEALIZED STRESS AND TEMPERATURE PROFILES
ATMOSPHERIC PRESSURE CONSTANT AT 1.3 Pa

- - - - - - - -SPECIMEN L63L (L605 TEST 13), IDEALIZED STRESS AND TEMPERATURE PROFILES
SIMULATED MISSION ATMOSPHERIC PRESSURE PROFILES

0.3

SIMULATED MISSION AND IDEALIZED TRAJECTORIES

C3-38

M LL ASTO OMPANY

CYCLES

FIGURE 3-35 COMPARISON OF CYCLIC CREEP STRAINS FOR
SIMULATED MISSION AND IDEALIZED TRAJECTORIES
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STRESS - TEMPERATURE

TEMPERATURE

STRESS

--TIME/CYCLE-- TIME

CYCLE TIME AT STRESS = 20 MINUTES

TEST TEMPERATURE - 11440K

SPECIMEN L37L
(75,8 MPa)

2.0

TEST3 TEST 14

Li

1.0

SPECIMEN L61L
(47.6 MPa)

SSPECIMEN L53L
0 50 100 (27.9 MPa)S100 150

CYCLES
FIGURE 3-36 L605 CYCLIC TEST NO. 14 - CONTINUATION OF L605 BASIC

CYCLIC TEST NO. 3

3-39

MCDONANELL DOUGLAS ASrTRoIIAU'rECS COAMPANy . WAsT



'-PREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

does not appear to be an important factor in the creep response behavior of L605.

Even though it did not appear that room temperature recovery was occurring,

.the possibility still existed that high temperature recovery was occurring in our

basic cycle profile. High temperature recovery is a specimen relaxation during

exposure to elevated temperature and no load conditions similar 
to what occurs in

the basic cycle profile). To determine if high temperature recovery was occurring,

an additional test was performed (test No. 11, specimens L43L and L38L) in which

the load was mainained for 50 minutes (see Figure 2-24(a)) instead of the usual 20

minutes. By maintaining the load until the temperature is lowered, high temperature

recovery should be prevented from occurring. Comparison of this test (No. 11), which

did not have high temperature recovery, with one that could have high temperature

recovery (test No. 3) revealed that there was no significant difference between the

resultant creep strains for the two tests (See Figure 3-37). As a result neither

room or high temperature recovery phenomena appear to be an important factor in

L605 creep response.

3.1.7 STEPPED STRESS CYCLIC TESTS

Tests were designed to provide data for evaluation of various hardening

rules applicable to TPS beam bending where stress varies as a function of time (see

section 2.9.2.3). L605 tests 5, 6, and 7 were conducted at 1144
0K and L605 test

10 was conducted at 1092 0K. All tests were conducted using the typical cycle

profile (20 minutes at load and peak temperature) shown in Figure 2-22. Load

was varied, periodically, after a fixed number of cycles in each of the tests as

indicated in Figures 3-38 to 3-41.

Stresses for Tests 5 and 10 were selected to duplicate portions of the creep

strain curves from Test 3 and 2 respectively (Figure 3-25 and 3-24) to allow

possible direct data comparisons.
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1200

1600
11001 

TEMPERATURE PROFILE
1000

9001 1200, /

S- 800
I-I

.. 700 800

STRESS PROFILE
600

500 4

20 MIN.
4001 -

50 MIN

300 -

10 0 10 20 30 40 50 0
TIME - MINUTES

1.6

20 MIN AT LOAD
1.2 (73.5 MPa)

50 MIN AT LOAD
0.8 (75.9 MPa)

50 MIN AT LOAD

0.6

0 (47.2 MPa)
0 10 20 30 40 50 60

CYCLES

FIGURE 3-371 EFFECT OF TIME AT MAXIMUM LOAD FOR L605 CYCLIC TESTS AT 11440K
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801

. ....... ......

SPECIMEN L103LUJI -40 -t - oo =

SPECIMEN L49L

SPECIMEN L94L
I-

20

0  26 40 60 80 100.

CYCLES

0.8I
CYCLE TIME AT STRESS = 20 MINUTES

TEST TEMPERATURE = 11440K l

0.6
SPECIME L103L ,o o

.4 /SPECIMEN L49L
0.4 ......... .om ...

0.2 SPECIMEN L94L

20 40 60 80 100

CYCLES

FIGURE 3-38 L605 CYCLIC TEST NO. 5 - STEPPED STRESS
HISTORY AND RESULTANT CREEP
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TEST TEMPERATURE = 10530 K 140
STRESS - TEMPERATURE

12C 'I -T -
TEMPERATURE ... . .

ISPECIMEN L87L
STRESS II

80
a,.- SPECIMEN L47L- .... **. ... ....

60 - -- ----

L.J SPECIMEN L55L
TIMECYCLE H TIME

CYCLE TIME AT STRESS = 20 MINUTES

00 20 40 .60 80 100
CYCLES

1.4

1.2

pe-
,/I

SPECIMEN L87L

0.4

SPECIMEN L55L

0. 4 
- ..... 60 0 * - ---- 4'

.20 40 60 80 100
CYCLES

FIGURE 3-39 L605 CYCLIC TEST NO. 10 - STEPPED STRESS HISTORY AND RESULTANT CREEP
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Test No. 6 and 7 (Figures 3-40 and 3-41) were conducted to simulate stress

change as a function of cycle, which will occur in a TPS 
beam. A comparison of

the results for these two tests indicates that the total creep strain is path

dependent. For all three specimens, when stresses were high at the 
start of the

test (Figure 3-41) and were lowered continuously during the test, the creep strains

were greater than those obtained where the stresses were low at the start of 
the

test, and increased continuously during the test (Figure 3-40).

Comparison of test results with predictions for specimens L26L test 6) and

L75L (test 7) are presented in Figures 3-42(a) and 3-42(b). These predictions are

based on application of the L605 cyclic creep equation (Equation 3-6), in conjunc-

tion with hardening theories of creep accumulation. In addition to predictions

based on time hardening and strain hardening theories, a third approach is

presented (rate dependent approach). This rate dependent approach is based on

the results of L605 tests 6 and 7 because, as shown in the figure, time hardening

provided the best predictions in the case of increasing stress (test 6) and strain

hardening provided the best predictions in the case of decreasing stress (test 7).

Therefore, the rate dependent approach was postulated as a combination of time

hardening and strain hardening theories. For this approach the time hardening

strain rate is calculated at each analysis time step and compared to the strain rate

used in the previous time step. Then strain hardening or time hardening is applied

depending on whether the strain rate has decreased or increased respectively.

Comparison of predictions with test results from tests 5 and 10 are shown in

Figure 3-43(a) and 3-43(b). For these data the three hardening approaches provide

comparable predictions with the strain hardening theory yielding highest 
strain

predictions and the rate dependent approach yielding the lowest strain predictions.

Further comparisons of predictions with test results are presented in the following

section.
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100

SPECIMEN L64L

-... SPECIMEN L26L

0 r m  -" ..... . SPECIMEN L33L

upmow mo,, = .. _Jl -

20

0
0 20 40 60 80 100

.CYCLES

0.8 I
CYCLE TIME AT STRESS = 20 MINUTES
TEST TEMPERATURE = 11440K

0.6C

I 0 0

0.434

0 20 40 s0 80 100
CYCLE

FIGURE 3-40 L605 CYCLIC TEST NO. 6 - INCREASING
STRESS HISTORY AND RESULTANT CREEP
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01000
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I= I"" Bam mar "l

CO ....... . . . SPECIMEN L97L1- 40.

W ... SPECIMEN L75L

. SPECIMEN L88L

20
CYCLE TIME AT STRESS = 20 MINUTES

TEST TEMPERATURE = 1144 0K

0 20 40 60 80 100
CYCLES

1.4

SPECIMEN L97L
12

/0.8 - a ,SPECIMEN L75LI-

0.4. . O.... ........ SPECIMEN L88L

0 .20 40 60 80 100

CYCLES

FIGURE 3-411 L605 CYCLIC TEST NO. 7 - DECREASING STRESS
HISTORY AND RESULTANT CREEP
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STRAIN HARDENIN /

I-1

wO

TIME HARDENING
RATE DEPENDENT APPROACH

TEST DATA (SPECIMEN L26L)

0 20 40 60 80 100
CYCLES

a) Increasing Stress History (L605 Test 6)

1.0
TIME HARDENING

0. 8 m  m  m  m

0.6 TEDEPENDENT APPROACH

STRAIN HARDENING

'. TEST DATA (SPECIMEN L75L)
0.4

0 20 40 60. 80 100
CYCLES

b) Decreasing Stress History (L605 Test 7),

FIGURE 3-42 COMPARISON OF HARDENING THEORIES
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0.81 1
CYCLE TIME AT STRESS = 20 MINUTESi

TEST TEMPERATURE = 11440K I

STRAIN HARDENING

TIME HARDENING

hi I
Liu

RITE DEPENDENT
APPROACH

-.- TEST DATA (SPECIMEN L49L)

S20 40 60 80 100
CYCLES

a) Test 5

1.6

STRAIN HARDENING
S TEST DATA (SPECIMEN L87

a- a

RATE DEPENDENT
APPROACH

TIME HARDENING

20 40 60 80 100

CYCLES

b) Test 10

FIGURE 3-43 COMPARISON OF HARDENING THEORIES - STEPPED STRESS HISTORIES
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3.1.8 TRAJECTORY TESTS

Four cyclic trajectory tests were conducted using L605 tensile specimens (.025

cm, longitudinal direction). These tests are a two-step stress trajectory profile

with constant maximum temperature of 11440 K and constant pressure (test 9), two

idealized trajectory tests (tests 12 and 13) with maximum temperatures of 11440K

(comparison of tests 12 and 13 on the basis of atmospheric pressure variation is

presented in Section 3.1.6.2), and a simulated mission trajectory test (test 15)

using representative Shuttle stress, temperature, and pressure profiles.

3.1.8.1 Idealized Trajectory Tests. One of the goals of cyclic testing in Phase I

was to assess the suitability of approximating continuously varying stress and

temperature profiles with a series of constant steps. It was considered necessary

to minimize the number of analysis steps to reduce analysis and computer time to

efficiently conduct TPS panel analysis.

The first test conducted on L605 specimens where stress was varied within a

cycle was test No. 9. Comparison of results for these specimens with specimens

tested at a constant stress (cyclic test No. 3) provide an initial estimate for

idealizing the stress profiles. Shown in Figure 3-44 is the two-step stress profile

for L605 test 9 and the resulting creep strains after 100 cycles for each of the

three specimens (Specimens L30L, L07L, and L35L). Also shown are 100 cycle creep

strain-stress data for the three specimens tested in L605 Test 3 (specimens L53L,

L61L, and L37L). For purposes of the comparison, the two step stress profile

(Test 9) could be idealized with a constant stress profile (Test 3). The objective

of this idealization is to determine what stress applied for the entire 20 minute

cycle, will produce the same 100 cycle creep strain as the two 10-minute stress

levels. These stress levels are designated by the points of intersection (A) as

shown in Figure 3-44. In this particular case, resulting "equivalent" or
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TEMPERATURE

STRESS "ACTUAL" STRESS PROFILE
(1605 TEST 9)

SEQUIVALENT" EQUIVALENT - --- --
"IDEALIZED" STRESS PROFILE

__ (L605 TEST 3)

(20 MIN.)

82 SPEC L67L

SPEC L30L

2 o01EQUIVALENT

60 SPEC L35L EQUIVALENT
SPEC L35L

50
CL

S' EQUIVALENT
I

30

20
0 1L605 TEST 9, 100 CYCLE DATA

------ 605 TEST 3, 100 CYCLE DATA

10 - A STRESS FOR EQUIVALENT CREEP STRAIN-

0 1.0 2.0

CREEP STRAIN - %

FIGURE 3-44 COMPARISON OF L605 CYCLIC TESTS 9 AND 3 -
STRESS FOR EQUIVALENT CREEP STRAIN
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"idealized" stress levels turned out to be the lower stress plus approximately 73%

of the difference between the two stress levels (steps). This result indicates

that the nonlinear nature of the creep-stress relationship should be considered in

the process of idealizing a profile. The importance of making correct judgements

in this idealization process becomes more critical as fewer steps are used in

approximating the profiles.

For tests 12 and 13, the simulated mission stress profile was idealized into

four steps as shown in Figure 3-45. The atmospheric pressure profile was varied

between the tests in order to allow an assessment of the effects of this variable

on creep strains (see Section 3.1.11.3).

For the idealized profiles it was considered desirable to maintain a constant

peak temperature for twenty minutes to be consistent with basic cyclic and stepped

stress tests. Therefore, the temperature profile, shown in the figure, represents

an idealization for the entire twenty minute time period, based strictly on judge-

ment. Stress levels shown were also based on judgement. Specifically, stresses in

the first two time increments were established as somewhat lower than would be

indicated by the previous discussion on L605 test 9 in an effort to offset higher

temperatures and stress levels during the initial six minutes (200 seconds to 500

seconds).

A study using hardening theories in conjunction with cyclic equation 3-6 was

conducted for the idealized trajectory tests. Typical comparisons of predictions

with test data from tests 9 and 13 are presented in Figures 3-46 and 3-47. Results

show that the rate dependent approach generally provides closer predictions than

strain hardening or time hardening theories individually.

3.1.8.2 Simulated Mission Test. The final test of L605 tensile specimens (Test 15)

was conducted using representative shuttle stress, temperature, and pressure profiles.

The simulated mission profile and creep strain results are presented in Figure 3-48.
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FIGURE 3-45 SIMULATED MISSION TRAJECTORY PROFILES
FOR L605 CYCLIC TESTS 12, 13, AND 15
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Comparison of idealized and simulated mission trajectory creep strain results

are shown in Figure 3-35 where creep strain data are plotted for specimen L86L (L605

Test 12), specimen L63L (L605 Test 13), and specimen L80L (L605 Test 15). Specimen

L80L (L605 Test 15) was tested to the simulated mission stress and temperature pro-

file shown in Figure 3-45 while Specimens L86L and L63L (Test 12 and 13) were both

tested to the idealized stress and temperature profiles shown in Figure 3-45. The

difference between tests (Tests 12 and 13) was the atmospheric pressure profile

(see Section 3.1.6.2). Because resulting creep strains for specimens L86L and L63L

are not significantly different from those for specimen L80L, it can be suggested

that the four step stress profile and corresponding flat temperature profile is a

good idealization of the actual profiles.

In comparing predictions using the hardening theories for Test 15 data, it

was shown that the strain hardening theory and the rate dependent approach closely

approximate the test data. A typical comparison of test data and predictions is

presented in Figure 3-49.

For analysis purposes the simulated mission stress and temperature profiles

were idealized into 22 time steps or a total of 2200 steps for the 100 cycle creep

accumulation analysis. The analysis steps used correspond to the 100 second incre-

ments in stress and temperature data for the profiles, as presented in appendix

(C-3-23). Because the total time analyzed in each profile is 33 minutes (1.67 min-

utes per time step), the time of 33.3 hours maximum (100 cycles @ 20 minutes/cycle)

for which the L605 cyclic creep empirical equation was derived, is exceeded at 55

cycles in Figure 3-48. Therefore, creep predictions beyond this time are outside

equation limits and should not be used. This recommendation is based on the fact

that the form of the cyclic equation (3-6) allows strains to decrease at accumulated

times greater than 33 hours (see Figure 3-28). As a result, extrapolation beyond 33

hours results in incorrect strain predictions. This trend can be seen in Figure
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3-49, where strain hardening closely approximates the test 

within the time range

(55 cycles); however, outside this range the 
difference between the two becomes

greater with increasing time.

3.1.9 L605 CONCLUSIONS

L605 tensile specimens were tested at steady-state conditions over the tempera-

ture range of 978 0K (13000F) to 1255 0K (18000 F) for approximately 200 hours or creep

strains of up to approximately .5% @ 50 hours. The following empirical regression

equation was developed for data obtained in steady-state 
creep tests conducted under

this phase of the program.

In E = -3.92495 - .00237t + .45047 In t (3-4)

+1.03087 In a -4.14348 (-)

+.11052 a in T +.0000406 (Tat)

where e = creep strain, %

t = time, hours

a = stress, MPa

T = temperature, 0K/1000.

An effect of gage on creep response (thin gages creep faster) was noted in

both the steady-state literature data base and supplemental test data. This effect,

however, is attributed to a change in material processing at about t = .064 cm. No

differences in creep response due to rolling direction could be concluded.

The following empirical regression equation was developed for cyclic test data.

In E = -2.89413 - .01743t + .54892 In t (3-6)

+1.31015 In a -6.66548 ( )

+.19131 a In t +.00021 Tot

This equation is applicable over the same temperature range as for the steady-

state equation, for times of up to 33 hours (100 cycle test at 20 minutes per cycle).

It was demonstrated that no significant difference exists between steady-state

and cyclic creep strain test results.
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No effects on creep strain due to variation of time per cycle (for same total

time) or atmospheric pressure could be determined. In addition, no evidence of a

recovery phenomena was found.

A hardening approach for accumulating creep strains was developed which pro-

vided good predictions for trajectory test data. This approach utilized a combina-

tion of time hardening and strain hardening accumulation theories in conjunction

with the cycle data empirical equation. Use of strain hardening in predicting

results of trajectory tests yields greater strains than obtained in testing.

It was demonstrated that complex trajectory creep strains can be adequately

predicted using only a few steps to represent the stress and temperature profiles.

3.2 Ti-6Al-4V- RESULTS OF TESTS AND DATA ANALYSIS

3.2.1 STEADY-STATE TITANIUM DATA BASE

3.2.1.1 Titanium Literature Survey. Ti-6Al-4V sheet is available in either annealed

or solution treated and aged temper. The use of annealed temper is generally recommend-

ed for the thin gages required for reradiative TPS because warpage can occur using

the solution treatment process. Therefore, only annealed sheet creep data was used

for the data base.

One literature source, Reference 12, had the largest amount of data for annealed

sheet. This source contained two separate sets of data: (1) results of creep testing

performed by Joliet Metallurgical Laboratories on 0.160 cm sheet manufactured by

Mallory Sharon (now Reactive Metals Div. of U.S. Steel); and (2) results of tests

performed by Metcut Research Associates on 0.102-.160 cm sheet manufactured by

Titanium Metals Corporation of America (TIMET). This data is presented in Appendix D-l.

3.2.1.2 Titanium Data Base Analysis. The Mallory Sharon data set consisted of 9

tests at 589 0K, 12 tests at 700 0K, and 11 tests at 8110 K. Of these 32 tests, only 1
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was a replicate. For the TIMET data set, 23 tests were at 5890K, 8 were replicates

at 7000K, and 9 were replicates at 811
0 K. Examination of the two data sets revealed

that the range of stresses were similar at 700 and 811*K; however, at 5890 K, the

Joliet Metallurgical tests were performed at lower stress levels than the Metcut

tests. In the analysis of the titanium data, as with the L605 and Rene' 41 data, creep

strains greater than 0.5% were eliminated along with the tests that were performed

above the yield strength (Fty) at temperature.

Initially the two data sets were analyzed separately to develop the following

two equations:

For the Joliet Metallurgical tests

.562 .162 -3.453
= 1.141 t exp ( T ) (3-7)

For the Metcut tests

S.6487 a.738 .299 4.208 (3-8)

where c = creep strain, %

a = stress, MPa

t = time, hours

T = Temperature, OK/1000

The standard errors of estimate (S y) for these two equations, based on the natural

logarithm of strain, were .6009 and .6234 respectively. This standard error of

estimate appears to be high, especially compared to the L605 and Rene' 41 equations.

To determine how low the standard of estimate should be, a study was made of the

scatter in data for individual tests and between tests at the same temperature and

stress. This scatter is referred to as an internal estimate of error. It was

possible to make this calculation for the Metcut data because of the large number

of replicate tests. In the analysis of error, calculations were made using data

from 20 sets of replicate tests performed by Metcut. These calculations revealed

that the error due to testing (internal estimate of error) based on the natural

logarithm of strain is 0.29. Therefore, the equation describing the Metcut data
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still left a large portion of the data unexplained (S of .6234 compared to S of
Y y

.29).

To improve the fit, interaction terms and power functions of a and t were

considered. Application of these types of terms resulted in the following empirical

equations.

For Joliet Metallurgical test data

In E = -24.19 + .0 073a +22.79T +.95 (Ina -1.931) +.78 Int -.01 (lnt) 2 -.06 (3-9)
((In a -1.931)lnt

T

For Metcut tests

In E = -23.44 + .0058a +22.73T +.89 (Ina -1.931) +.53 Int - .03 ((n -. 931nt) (3-10)

The standard error of estimate for these two equations, based on the natural

logarithm of strain are .3202 and .4191, respectively. The standard error of estimate

of 0.4191 represents the lowest value obtained for the Metcut data.

Because comparative plots of these two equations indicated no significant

difference between their prediction capability, the two data bases were combined

and used to develop the following equation for the Ti-6AI-4V data base:

In E = -24.89504 +21.40095(T) + 1.15998 Ina + .63357 In t +.00615 (in t)2  (3-11)

+6.94 x 10- 6 (2) -.03314 (ina) Int
T

The standard error of estimate (S y) and multiple R computed for this equation

are .4360 and .8783, respectively. This standard error of estimate appears to be
limited by the Metcut test results. The residual plots (in Eactual -in calculated

vs. variable) for this equation are shown in Figure 3-50. Figure 3-51 shows the

variation between the actual test points and their calculated values along with the

+ 1.96 Sy error band lines.
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3.2.2 TITANIUM SUPPLEMENTAL STEADY-STATE TESTING

3.2.2.1 Titanium Supplemental Steady-State Test Matrix.

A total of 15 supplemental steady-state tests were conducted on 6Al-4V

titanium tensile specimens. Combinations of temperature and stress selected were

those which resulted in strains of approximately 0.50% in 50 hours, 0.33% in 200

hours, and 0.10% in 200 hours, as predicted by the literature survey creep equation

(Equation 3-11). Lines of constant creep strain and the test points are indicated

in Figure 3-52. Test points obtained from this figure are shown in Table 3-3.

Ten of these tests were for .036 cm (.014 inch) thick material tested in the

longitudinal rolling direction. These ten tests make up the basic test matrix from

which an empirical equation for supplemental steady-state data was determined. Of

the five additional supplemental steady-state tests listed in Table 3-3, three were

conducted on .036 cm thick specimens tested in the transverse rolling direction,

and two were conducted on .058 cm thick specimens tested in the longitudinal

rolling direction. Creep strain results for each of the supplemental steady-state

tests are presented in Appendix D-2. Included in this appendix are the elastic

strains which were determined at the start and conclusion of the test.

3.2.2.2 Test Data Evaluation - Basic Test Matrix. Agreement between data base

predictions, based on the literature survey equation (Equation 3-11), and supple-

mental test results are noted throughout these tests. This was true even with the

difference in gage between the data base supplemental tests.

The following equation was developed using data obtained from the hand faired

curves of the basic supplemental tests 1 thru 10 (Figures 3-53 to 3-56). The

data consisted of strain values taken at six points per test spaced in such a manner

as to describe the curve. For example, a 40-hour test had strains selected at

times of 1, 2, 5, 10, 20 and 40, while a 200-hour test had strains selected at
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FIGURE 3-52 Ti-6AI-4V SUPPLEMENTAL STEADY-STATE EXPERIMENTAL DESIGN
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TABLE 3-3
Ti-6AI-4V SUPPLEMENTAL STEADY-STATE TESTS

TEST TEST MATERIAL MATERIAL GAGE TEMPERATURE STRESS
NO. SPECIMEN ROLLINGDIRECTION CM _ INCHES oK oF MPa KSI

I T21L LONGITUDINAL 0.036 0.014 783 950 165.5 24.0
2 T23L LONGITUDINAL 0.036 0.014 783 950 48.3 7.0
3 T26L LONGITUDINAL 0.036 0.014 714 825 317.2 46.0
4 T34L LONGITUDINAL 0.036 0.014 714 825 165.5 24.0
5 T36L LONGITUDINAL 0.036 0.014 714 825 48.3 7.0
6 T74L LONGITUDINAL 0.036 0.014 658 725 475.8 :69.0
7 T76L LONGITUDINAL 0.036 0.014 658 725 317.2 46.0
8 T82L LONGITUDINAL 0.036 0.014 658 725 165.5 j24.0
9 T93L LONGITUDINAL 0.036 0.014 617 650 475.8 69.0

10 T104L LONGITUDINAL 0.036 0.014 617 650 317.2 46.0
11 T11T TRANSVERSE 0.036 0.014 714 825 317.2 :46.0
12 T12T TRANSVERSE 0.036 0.014 658 725 317.2 46.0
13 T13T TRANSVERSE 0.036 0.014 714 825 165.5 24.0
14 TIL LONGITUDINAL 0.058 0.022 714 825 317.2 46.0
15 T3L LONGITUDINAL 0.058 0.022 714 825 165.5 24.0
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El 317.2 MPR T104L

HAND FAIRED CURVE

- -- PREDICTED

€.1-

Z,
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0 20 40 60 80 100 120 140 160 l0o

TIME-HOURS

FIGURE 3-53 Ti-6AI-4V SUPPLEMENTAL STEADY-STATE CREEP DATA AT 5610 K
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/ I L - -LE. . .. . .
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FIGURE 3-54 Ti-6A1-4V SUPPLEMENTAL STEADY-STATE CREEP DATA AT 6580K
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Tii ME I IOUR
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FIGURE 3-55 Ti-BAI-4V SUPPLEMENTARY STEADY-STATE CREEP DATA AT 7140K
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FIGURE 3-56 Ti-6AI-4V SUPPLEMENTARY STEADY-STATE CREEP DATA AT 7830K

3-69

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



' , PREDICTION OF CREEP IN PHASE NAS-1-11774

; METALLIC TPS PANELS SUMMARY REPORT

1, 5, 20, 50, 100 and 200 hours from the hand faired curves.

In E = -24.08576 +22.53736 T +5.89 x 106 2 +.90505 Ina +.43365 Int (3-12)

The standard error of estimate (Sy) and multiple R computed for this

equation are .2438 and .9729, respectively. The residual plots (in Eactual

- In calculated vs. variable) for this equation are shown in Figure 3-57.

Comparisons of creep strain predictions (based on Equation 
(3-13)) with test

results are shown in Figures 3-53 thru 3-56.

3.2.2.3 Effects of Gage and Rolling Direction. The last five supplemental steady-

state tests listed in Table 3-3 were conducted to investigate possible effects

of material rolling direction and material gage on creep. Therefore, each of the

three transverse specimens and two .058 cm (.022 inch) thick specimens were tested

at stresses and temperatures at which testing had been conducted for the basic

test matrix specimens. Comparative plots of creep strain results for these tests

are shown in Figures 3-58 to 3-60. No significant difference in creep response

due to thickness variation and rolling direction was observed.

3.2.3 COMPARISON OF TITANIUM STEADY-STATE DATA BASE AND SUPPLEMENTAL TEST RESULTS.

Comparison of the literature survey equation (Equation 3-11) with the supple-

mental creep equation (Equation 3-12) on a term-for-term basis indicated agreement

between supplemental test results and the literature survey data base. The two

terms (Int)2 and Inalnt/T in Equation 3-11, were not determined to be significant

in fitting the supplemental test data.

Stress and temperature combinations required to produce three levels of creep

strain (.50% @ 50 hours, .33% @ 200 hours, and .10% @ 200 hours) for the supplemen-

tal data equation are shown in Figure 3-52. Comparison of these constant strain

lines with those for the data base equation indicates that creep occurred at a
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FIGURE 3-57 RESIDUAL PLOTS OF Ti-6AI-4V SUPPLEMENTAL STEADY-STATE
EQUATION (3-12)
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CD) 165.5 MPR T13T
- 165.5 MPFR T34L
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FIGURE 3-59 COMPARISON OF GAGE AND ROLLING DIRECTION ON Ti-6AI-4V
CREEP AT 714OK AND 165.5 MPa
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FIGURE 3-60 COMPARISON OF GAGE AND ROLLING DIRECTION ON Ti-6AI-4V
CREEP AT 7140K AND 317.2 MPa

3-73

MCOONIFELLL DOUGLAS ASTRONAUTICS CO Ml*'PANP,V - fASr



'PREDICTION OF CREEP IN PHASE I NAS-1-11774

I METALLIC TPS PANELS SUMMARY REPORT

faster rate in the supplemental tests. Based on Figure 3-52, percentage variations

is stress required to produce equal creep strains, at a typical temperature of

714 0 K, range from approximately 22% (@ 151.7 MPa) to 8% (@ 296.5 MPa).

Use of the supplemental creep equation (Equation 3-12) will yield conservative

predictions relative to the literature survey equation (Equation 3-11). In addi-

tion, the use of Equation (3-12) would be recommended for use in predictions at

low stresses and times since the boundary conditions of zero strain at zero stress

and time are satisfied.

3.2.4 TITANIUM BASIC CYCLIC TESTS

3.2.4.1 Basic Cyclic Test Matrix. Basic cyclic tests were conducted on twelve

.030 cm specimens at temperatures of 658 0K (725 0 F), 7140K (825 0F), 783 0K (9500F,

and 839 0K (1050 0 F) as indicated in Table 3-4. Each of the specimens was tested in

the longitudinal rolling direction. Each test was conducted for 100 cycles using

the 55 minute cycle (20 minutes at load and peak temperatures) presented in Section

2.9.2.2. This portion of the cyclic tests are designated as titanium cyclic tests

1 thru 4 (3 specimens per test). Data are presented in Appendix D-3.

The 658 0K, 714 0K and 783 0K test temperatures are the same as those tested in

the supplemental steady-state tests. The 6580K temperature, however, was the

minimum temperature at which loads could be applied within the whiffle tree mechan-

ism design load capability and still obtain reasonable creep strains. Therefore, a

test temperature of 839 0K was used in test 4 instead of the 617 0K temperature used

in supplemental steady-state testing.

3.2.4.2 Test Results and Analysis. Cyclic creep strain results for the twelve

specimens in test 1 through 4 are presented in Figures 3-61 through 3-64.

The following equation was developed using data obtained from the hand faired

curves of these twelve tests. This data consisted of strain values taken at
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TABLE 3-4 Ti-,6AL-4V BASIC CYCLIC TESTS
CYCLIC TEST TEMPERATURE STRESS

TEST
NO. SPECIMEN K OF MPa KSI

1 T25L 658 725 207.0 30.02
1 T60L 658 725 299.2 43.40

T51L 658 725 399.0 57.86
T38L 714 825 114.7 16.63

2 T39L 714 825 192.0 27.85
T31L 714 825 295.9 42.92
T56L 783 950 49.9 7.23

3 T59L 783 950 82.9' 12.03
T41L 783 950 130.4 18391
T87L 839 1050 197 2.85

4, T89L 839 1050 30.5 4.43
T64L 839 1050 47.2 6.85

NOTES
1. ALL SPECIMENS .030 CM
2. ALL SPECIMENS TESTED IN LONGITUDINAL ROLLING DIRECTION.
3. ALL TESTS - 20 MINUTES/CYCLE, 100 CYCLES.

SPECIMEN STRESS (MPa)
0.28

T60L 299.2 0 TL

0.24 - T25L 207.0

T51L 399.0 0

I- S0.16 .

001 T25L

Lu

0.08

-TEST DATA
- ---- -PREDICTION

0 10 20 30 40 50 60 70 80 90 100 110
CYCLES

FIGURE 3-61 Ti-6AI-4V CYCLIC TEST NO. 1 - BASIC CYCLIC
TEST AT 6580K
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1.12

0.96 ---- TEST DATA

SPECIMEN STRESS MPa -PREDICTION

0.80-- T31L 295.9
T38L 119.7 .31L

0.64 T39L 192.0

S0.64
i

0.16 T38L

0 10 20 30 40 50 60. 70 80 90 100 110

CYCLES

FIGURE 3-62 Ti-6AI-4V CYCLIC TEST NO. 2 - BASIC CYCLIC TEST AT 7140K

1.28I I I
SPECIMEN STRESS MPa T41L

1.12 T41L 130.3

T56 L 49.9

T59L 82.9

--- TEST DATA
0.80 -- PREDICTION

I0cII 10 "T59

0.64

0.321 0 . T56L

0 10 20 30 40 50 60 70 80 90 100 110

CYCLES

FIGURE 3-63 Ti-6AI-4V CYCLIC TEST NO. 3 - BASIC CYCLIC TEST AT 7830 K
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5 cycle intervals from the hand faired crrves. Creep times were the accumulated

cycle time at maximum load and temperature, therefore, for the basic cycles the

time was .33 hrs/cycle or 1.67 hrs/5 cycles.

In e = -28.94077 +26.24850 T +2.52 x 10-6 a2 +1.40406 Inc + .46894 Int (3-13)

The standard error of estimate (Sy) and multiple R computed for this equation are

.1951 and .9755, respectively. The residual plots (In Eactual -in ccalculated vs.

variable) for the equation are shown in Figure 3-65. It is of the same form as that

obtained for the supplemental steady state tests (Equation 3-12).

Comparison of predictions, using this equation, and the basic cyclic test data,

are shown in Figures 3-61 through 3-64.

3.2.5 COMPARISON OF TITANIUM CYCLIC AND SUPPLEMENTAL STEADY-STATE DATA

3.2.5.1 Test Data Comparison. As was noted in Section 3.2.4 both supplemental

steady-state and basic cyclic tests were conducted at three common temperatures

(658*K, 7140K and 7830 K). Direct comparisons of test data at these temperatures

from these two series of tests are shown in Figures 3-66 and 3-67 for times of 5

hours (15 cycles) and 33.3 hours (100 cycles), respectively. In this comparison

the cyclic time was the accumulated time at maximum load and temperature (i.e.,

100 cycles = 33.3 hours). Based on this comparison, there does not appear to be

any significant difference between cyclic and steady-state data for equal total

times at load.

3.2.5.2. Microstructure Comparison. The microstructure of the as-received

Ti-6AI-4V alloy (Figure 3-68) consists of slightly elongated grains of alpha phase

in a beta phase matrix. Exposure to both cyclic and steady-state creep at tempera-

tures as high as 7830 K and stresses of 48.3 MPa has produced no observable change

in the microstructure of this alloy relative to the as-received structure.
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2.4

2.0 ------ TEST DATA
.0 I - - - -PREDICTION

STRESS T64L
SPECIMEN (MPa)

4 1.6
TS64L 47.2

_ T87L 19.7
1.2 T89L 30.5

CL

0 0.8

0 00 T87L
0.4

0.0i
0 10 20 30 40 50 60 70 80 90 100 110

CYCLES

FIGURE 3-64 Ti-6AI-4V CYCLIC TEST NO. 4 - BASIC CYCLIC
TEST AT 8390 K
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FIGURE 3-65 RESIDUAL PLOTS OF Ti-6AI-4V CYCLIC CREEP EQUATION (3-13)
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FIGURE 3-65 RESIDUAL PLOTS OF Ti-6AI-4V
CYCLIC CREEP EQUATION (3-13)(Continued)
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0.5 I

5 HR DATA (15 CYC) SS CYC

O 6580K
0 U 714

0K

0.1

/ A 30K

/

0 10 20 30 40 50 0 70

a o-MPa

FIGURE 3-66 COMPARISON Ti-6AI-4V CYCLIC AND SUPPLEMENTAL STEADY-STATE DATA AT 5 HOURS

33 HR DATA (100 CYC) SS CYC

0 0 6580K
1.2 0 8 714K

A 7830K

1.0

P0.2

I - MPa

00-

FIGURE 3-67 COMPARISON Ti-6AI-4V CYCLIC AND SUPPLEMENTAL I STEADY-STATE DATA AT 33 HOURS
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PHASE I
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ALLOY: Ti-6AI-4V , . -

CONDITION: AS RECEIVED :
ETCHANT: KROLL'S REAGENT*
MAG: 50OX
THICKNESS 0.031 cm

ALLOY: Ti-6AI -4V

CONDITION: TESTED (CYCLIC) , <
APPLIED STRESS: 48.3 MPa
TEST TEMPERATURE: 7830K
EXPOSURE TIME: 100 CYCLES (33.3 HRS)
ETCHANT: KROLL'S REAGENT
MAG: 50OX
THICKNESS 0.034 cm "

SPEC NO. T56L

ALLOY: Ti-6AI-4V
CONDITION: TESTED (STEADY STATE) , ....... .
APPLIED STRESS: 48.3 MPa
TEST TEMPERATURE: 7830K
EXPOSURE TIME: 150 HOURS
ETCHANT: KROLL'S REAGENTMAG: 500X

THICKNESS 0.035 cm

*2ml HF, 5ml HNO3, 93ml H20
SPEC NO. T23L

FIGURE 3-68 MICROSTRUCTURE OF Ti-6AI-4V BEFORE AND AFTER CREEP EXPOSURE
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3.2.6 TITANIUM CYCLIC TESTS FOR EVALUATION OF ADDITIONAL VARIABLES

3.2.6.1 Effect of Time Per Cycle. Results of titanium cyclic creep.test No. 7

are presented in Figure 3-69. This test is a replicate of test 2, except that

the time at load and maximum temperature is 10 minutes instead of the 20 minutes

used in test 2. Comparison is made in Figure 3-69 between the two tests for equal

total time at load. Also shown in the figure is the + 1.96 Sy confidence band about

the 20 minute per cycle data based on Sy = .1951 derived for the 20 minute-per-cycle

basic cyclic equation (Equation 3-13). Although the 10 minute per cycle data are

within this band, these data are consistently about 25% lower than the 20 minute per

cycle data. Therefore it appears that there may be an effect due to time per cycle

on titanium cyclic creep strains.

3.2.6.2 Effect of Atmospheric Pressure. Cyclic tests 10 and 11 were replicate

idealized trajectory tests, except that a simulated atmospheric pressure profile

was applied in test 11 while in test 10 the pressure was maintained constant at

<1.3 pa. Comparison of creep strain results for the corresponding specimens in

these tests are shown in Figure 3-70. Based on the comparison, it cannot be con-

cluded that varying the atmospheric pressure has any effect on creep strain response.

3.2.6.3 Effects of Time Between Cycle. Specimens T41L, T56L, and T59L were

tested to 100 cycles at 7830K (cyclic test No. 3) as part of the basic cyclic

tests for titanium. Several weeks subsequent to completion of this test the speci-

mens were tested for an additional 50 cycles. This additional cycling is

designated as cyclic test No. 12. Creep strain results are shown in Figure

3-71. Comparison of the creep rates at the end of test 3 with those obtained

in test 12 indicates a slight increase in slope. However, this increase is not
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O Ti-6A1-4V TEST 2
50 CYCLES AT 20 MINUTES/CYCLE /

O Ti-AI-4V TEST 7 /
100 CYCLES AT 10 MINUTES/CYCLE /

±1.96 Sy /

0.3

/I
/ /

0.1

0 50 100 150 200 250 300 350
STRESS - MPa

FIGURE 3-69 Ti-6AL/-4V CYCLIC CREEP STRAINS AS A
FUNCTION OF TIME PER CYCLE
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1.o I I I
- -- PRESSURE PROFILE (TEST 10)
- - - CONSTANT PRESSURE (TEST 11)

0.80

T49L

0.60
-- --T73L

I-

I 0.40

0 10 20 30 40 50 60 70 80 90 100
CYCLES

FIGURE 3-70COMPARISON OF TITANIUM CYCLIC TEST DATA
FOR EFFECTS OF ATMOSPHERIC PRESSURE

2.0

- -- TEST 3 TEST 12 (4 WEEK DELAY )

SPECIMEN T41L
130.4 MPa

0.8

y: SPECIMEN T59L
82.9 MPa

SPECIMEN T56L

0 20 40 60 80 100 120 140 160

CYCLES

FIGURE 3-71 EFFECT OF TIME DELAY BETWEEN CYCLE TESTS ON THE CREEP
BEHAVIOR OF Ti-6AI-4V
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considered sufficient to conclude that the time delay has an effect on creep

strains.

3.2.7 STEPPED STRESS CYCLIC TESTS

Increasing and decreasing stress history tests were conducted on titanium

specimens. These were titanium cyclic test No. 5 (specimens T67L, T63L, T66L)

and titanium cyclic test No. 6 (specimens T78L, T68L, T69L), respectively. Both

tests were conducted at 7830 K. Comparisons of creep strain tests results with

predictions based on strain hardening and time hardening creep accumulation theories

in conjunction with the cyclic creep equation (Equation 3-13) are shown in Figures

3-72 and 3-73. Predictions based on the time hardening theory are closest to test

results in the case of the increasing stress history test (test 5) and predictions

based on the strain hardening theory are closest to test results for the decreasing

stress history test (test 6). Therefore, the analysis approach where strain is
accumulated by using time hardening when strain rate increases and strain hardening

when strain rate decreases (rate dependent approach) will be evaluated in the

analysis of trajectory test data in the following section.

3.2.8 TRAJECTORY TESTS

Four cyclic trajectory tests (8, 9, 10 and 11) were conducted using titanium

tensile specimens. These tests are a two-step stress trajectory profile with a
constant maximum temperature of 783 0K and constant pressure (test 8); an actual tra-
jectory test (test 9) using actual Shuttle stress, temperature, and pressure profiles;

and two idealized trajectory tests (tests 10 and 11) with maximum temperatures of

8730 K. Comparison of test 10 and 11 results on the basic of atmospheric pressure

variations, is presented in Section 3.2.6.2.

Comparison of creep strain results for tests 8, 9 and 10 with predictions based

on the strain hardening theory of creem accumulation are shown in Figures 3-74 to
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3-76. The strain hardening theory was found to yield 
the best predictions for

this series of tests, although all predictions 
resulted in lower creep strain than

obtained in testing at the higher test times. The rate dependent approach, used

successfully in predicting L605 data, yielded 
strains comparable to the time

hardening predictions for these titanium data. These predictions were approximately

20% below the strain hardening predictions shown.

Steps used in idealizing the simulated mission 
stress and temperature profiles

(test 9) for analysis purposes are indicated in 
Figure 3-75. Higher creep strains

are predicted and obtained in the idealized trajectory 
tests (tests 10 and 11) than

in the simulated mission test, (test 9) because the 783
0K peak temperature is main-

tained over a longer period of time in tests 10 and 11.

The creep accumulation analysis for specimens in test 9 shows that approximately

95% of the creep strain occurs between 500 and 1500 seconds into 
the trajectory.

Predictions for test 9 are shown to 200 cycles (total time of 73.3 hours) although

the cyclic creep equation (Equation 3-13) are used in analysis 
was developed based

on 100 cycle data (total time of 33.3 hours).

3.2.9 Ti-6Al-4V CONCLUSIONS

Ti-6AI-4V tensile specimens were tested at steady-state conditions over the

temperature range of 616
0K (650 0F) to 783 0K (9500 F) for approximately 200 hours

or creep strains of up to approximately .5% in 50 hours. The following empirical

regression equation was developed for these data:

In E = -24.08576 +22.53736T + 5.89 x 10-6 a +.90505 In a + .43365 In t (3-11)

No effect could be seen in steady-state creep response due to material gage

or rolling direction. Creep response obtained in supplemental testing was shown

to be somewhat greater than that of the literature survey data base.

The following empirical regression equation was developed for cyclic test 
data.
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In e = -28.94077 + 26.24850 T + 2.52 x 10 a +1.40406 In a + .46894 in t (3-13)

This equation is applicable over the temperature range of 658 0K (725 0F) to 8390K

(1050*F) for times up to 33 hours (100 cycles at 20 minutes per cycle).

No significant differences were observed between cyclic and steady state

data for equal total times at load.

No effects on creep strain due to variation of time per cycle (for same

total time) or atmospheric pressure could be determined.

The strain hardening theory of creep accumulation, used in conjunction with

the empirical cyclic creep equation, provides good predictions of trajectory creep

test data. Time hardening yielded lower ('20%) predictions.

3.3 RENE' 41 RESULTS OF TESTS AND DATA ANALYSIS

3.3.1 RENE' 41 STEADY-STATE DATA BASE

3.3.1.1 Rene' 41 Literature Survey. Because Rene' 41 is a nickel base precipita-

tion strengthened alloy, the type of heat treatment can effect its creep response.

The steady-state literature survey data base was limited to the currently recommend-

ed solution treatment at 13940 K and aging at 11720K (see Section 2.2). Only two

sources, References 13 and 14, were found to contain creep data for this material

heat treatment.

Reference 13 contains data from 13 creep tests performed on 0.127 cm thick

material. Data from Reference 14 contains data from 24 creep tests performed on

0.020 cm thick material. Data from eleven of the tests in Reference 14, was noted

to have erratic readings ,or low readings due to faulting or loosened extensometers,

were eliminated from the data base. Remaining data are listed in Appendix E-l.

Because the data of Reference 14, designated as MDAC-E-INTRNL was conducted on thin

gage material (.020 cm) and also because these specimens were heat oxidized, they
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are more representative of the material used on this program. Therefore, data from

this source were used in development of the data base empirical equation.

3.3.1.2 Rene' 41 Data Base Analysis. The following empirical equation was developed

for the Rene' 41 data base:

In E = 3.81577 -11.08783 (1/T) +.57841 Ina + .63366 In t (3-14)

where E = creep strain, %

a = stress, MPa

t = time, hours

T = temperature, OK/1000

This equation has a multiple R of .8889 and a standard error of estimate of .4278

on the natural logarithm of strain. The residual plots (in Eactual -In Ecalculated
vs. variable) for this equation are shown in Figure 3-77.

Typical comparisons of test data with predictions based on equation (1) are

shown in Figure 3-78.

3.3.2 SUPPLEMENTAL STEADY-STATE TESTING

3.3.2.1 Rene' 41 Supplemental Steady-State Test Matrix. A total of eighteen supple-

mental steady-state tests were conducted on Rene' 41 tensile specimens per conditions

in Table 3-5. Twelve of these tests were for .028 cm (.011 inch) thick material

tested in the longitudinal rolling direction. These twelve tests make up the basic

test matrix from which an empirical equation for supplemental steady-state data is

determined. Of the six additional tests listed in Table 3-5, three were conducted

on .028 cm. (.011 inch) thick specimens tested in the transverse rolling direction,

and three were conducted on .053 cm (.021 inch) thick specimens tested in the

longitudinal rolling direction.
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FIGURE 3-78 COMPARISON OF LITERATURE SURVEY CREEP EQUATION
(3-14) WITH TEST RESULTS FOR RENE'41

TABLE 3-5 RENE' 41 SUPPLEMENTAL STEADY-STATE TESTS

TESTMATERIAL MATERIAL TEMPERATURE STRESSNOTEST TEST SPECIMEN ROLLING GAGE

DIRECTION m I in. OK F MPa KSI

I R21L LONGITUDINAL 0.028 0.011 1180 1665 68.9 10.0
2 R22L LONGITUDINAL 0.028 0.011 1155 1620 121.3 17.6
3 R31L LONGITUDINAL 0.028 0.011 1155 1620 55.2 8.0
4 R23L LONGITUDINAL 0.028 0.011 1155 1620 39.0 5.7
5 R29L LONGITUDINAL 0.028 0.011 1111 1540 103.4 15.0
6 R30L LONGITUDINAL 0.028 0.011 1111 1540 68.9 10.0
7 R28L LONGITUDINAL 0.028 0.011 1061 1450 68.9 10.0
8 R104L LONGITUDINAL 0.028 0.011 1061 1450 137.9 20.0
9 R24L LONGITUDINAL 0.028 0.011 1061 1450 68.9 10.0

10 R26L LONGITUDINAL 0.028 0.011 1061 1450 34.5 5.00
11 R27L LONGITUDINAL 0.028 0.011 983 1310 121.3 17.6
12 R25L LONGITUDINAL 0.028 0.011 964 1275 68.9 10.0
13 RIT TRANSVERSE 0.028 0.011 1155 1620 121.3 17.6
14 R13T TRANSVERSE '0.028 0.011 1111 1540 68.9 10.0
15 R12T TRANSVERSE 0.028 0.011 1061 1450 68.9 10.0
16 RIL LONGITUDINAL 0.053 0.021 1155 1620 121.3 17.6
17 R3L LONGITUDINAL 0.053 0.021 1111 1540 68.9 10.0'18 R2L LONGITUDINAL 0.053 0.021 1061 1450 68.9 10.0
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The original test matrix, shown in Figure 3-79, is an orthogonal composite

design (Reference 24). This design was selected because it provided a good distri-

bution of test conditions within the strain range of .50% in 50 hours to .10% in 200

hours, based on Equation 3-14 predictions as indicated in the Figure 3-79. The box

design utilized for L605, titanium, and TDNiCr did not fit the creep strain range

well in this case.

Based on initial test results.this matrix was modified resulting in completion

of the tests shown in the table. The test at 9830K and 39.0 MPa was deleted, based

on very low creep strains obtained in test 10 (10610 K and 34.5 MPa) and test 12

(964"K and 68.9 MPa). Tests 3 (1155K and 55.2 MPa), 5 (1111*K and 103.4 MPa), and,

6 (11110K and 68.9 MPa) were added. In addition test 9 was added as a replicate of

test 7, based on erratic strain readings obtained in test 7. Creep strain results

for each of the supplemental steady-state tests are presented in Appendix E-2.

Included in this appendix are the elastic strains which were determined at the start

and the conclusion of the test.

3.3.2.2 Test Data Evaluation - Basic Test Matrix. The following equation was develop-

ed using data obtained from the hand faired curves of the basic supplemental tests 1

thru 12 (Figures 3-80 thru 3-84). The data consisted of approximately 5 points per

test spaced in such a manner as to describe the curve. For example, a 80-hour test

had strains selected at times of 1, 5, 20, 50 and 80, while a 200 hour test had

strains selected at 1, 5, 20, 50, 100 and 200 hours from the hand faired curves.

In E = -35.21304 + 26.34069T + .55687 Int + .02807 (lna)3  (3-15)

This equation has a standard error of estimate of .3073 on the logarithm of

strain and a multiple R of .9687. The residual plots (in Eactual -ln scalculated

vs. variable) for this equation are shown in Figure 3-85.

Comparisons of equation predictions with test results for several of the tests

are presented in Figures 3-80 through 3-84. Review of these comparisons shows
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that the equation predicts lower strain rates than those accurring in the tests.

Predicted strains are higher than test values during the initial test timer, cross

the test values approximately midway through the test, and result in lower predic-

tions at the test completion. This result indicates that additional time terms

may be required to provide a better data fit. Terms such as n = f(t ), however,

were found to be insignificant in fitting data from the supplemental steady-state

basic test matrix (tests 1-12). The predictions for the 964 and 9830K tests are

not presented in Figure 3-80 because the amount of strain is so small that the

curve lies on the ordinate.

3.3.2.3 Effect of Gage and Rolling Direction on Rene' 41 Steady-State Creep.

Rene' 41 supplemental steady-state tests 13 through 18 (Table 3-5) were conducted

as replicates of basic matrix tests except for variations in rolling ditection

(tests 13, 14, 15 and in material thickness (tests 16, 17, 18). Comparison of creep

strains for thest two variables are presented in Figures 3-86, 3-87, and 3-88.

In each of the three comparisons, the thicker gage specimen (0.53 cm) exhibits

greater creep strain than either thin gage specimen. This difference is consis-

tently a factor of approximately 2 times the creep strain values for .028 cm thick

specimens tested in the longitudinal direction. One possibility for this effect is

the fact that the 0.053 cm material had a finer grain size (ASTM 7-8) than the

0.028 cm material (ASTM 6). Since the amount of creep obtained for thicker material

is greater than the factor of + 1.81 based on + 1.96 S scatter band for the supple-

mental steady-state creep equation (Equation 3-15), it can be concluded that the

gage was significant variable for this series of tests.

3-101

MCDONNELL DOUGLAS ASTRONAUrTICS COMPANYr - EA



SPHASE I NAS-1-11774
4,PREDICTION OF CREEP IN

METALLIC TPS PANELS SUMMARY REPORT

1.061 1.085 1.110 1.134 1.158 1.183.. 0000 . 61.6222. 632.703 3.2 3.84.3254.8665,06
1.073 1.098 1.122 1.146 1.171 *,,, . ... ,, .. .. ,...,, , *,, ,

. ..................... - . 1

.2 ' ::

-.44 
-. 44

- *1 -. 31. 1
1. 2

2 . -.

.22 * -. 18

-. 18 ..

1 -,*211 51 1 .

.31 .. 7 8

.05 
°  17 . . . . . . .

1 2

w U .- c * ..

q 
.1 2 . 11

.22 10 2

2 1

.61

.6

Z .- . ""

.0 2" ::
"° .6 - 0". 1

-.................... :: ..*? ........I. .. *

- - I -.0
.0 . o* 1

1.3a 3 5° 1

I ,- 1

-1 1 . ,2

1. . .. . . .



PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

D 68.9 MPR R12T
A 68.9 MPR R24L
C 68.9 MPA R2L

- HAND FAIRED CURVE

Lu

0Z

c

0.053 cm. LONGITUDINAL

0.028 cm. TRANSVERSE - l
,0.28. cm. L-NGITUDINAL-

0 20 40 60 0 100 120 140 160 10oo
TIME-HOURS

FIGURE 3-86 COMPARISON OF GAGE AND ROLLING DIRECTION ON CREEP OF
RENE'41 AT 1061 0K AND 68.9 MPa

0 68.9 MPA R13T
& 68.9 MPA R28L0.053 an. LONGITUDINAL
I .o] 68.9 MPA R3L
/- HAND FAIRED CURVE

S-0.028 cm. TRANSVERSE

.0.028 cm. LONGITUDINAL
Lu" 1

TI ME-HOURS

FIGURE 3-87 COMPARISON OF GAGE AND ROLLING DIRECTION ON
CREEP OF RENE' 41 AT 1iiiOK AND 68.9 MPa

3- 103

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY . EAST"4cDOaNmelAL "cpUG LAs AsTWrcoNAuT,1csCiWAV LAS



-- "PREDICTION OF CREEP IN PHASE I NAS-1-11774

SMETALLIC TPS PANELS SUMMARY REPORT

0 121.3 MPA RT -
& 121.3 MPA R22L
D[ 121.3 MPA RIL

- HAND FAIRED CURVE

I - - - - - - - - -- - - - - - -

J- 0.028 an. LONGITUDINAL

- .028 a. TRANSVERSE

S 0.053 a . LONGITUDINAL

a o 40 60 s8o to0 120 140 1i0 10

TIME-HOURS

FIGURE 3-88 COMPARISON OF GAGE AND ROLLING DIRECTION ON CREEP OF
RENE'41 AT 11550K AND 121.3 MPa

= .33% AT 200 HOURS

.50% AT 50 HOURS 1

20.7 -

13.8 -

EQUATION 3-14 (DATA BASE)
- - - - -- EQUATION 3-15 (SUPPLEMENTAL DATA)

0.8 0.9 1.0 1.1
1/T x 103 (T IN oK)

FIGURE 3-89 COMPARISON OF DATA BASE AND SUPPLEMENTAL TEST EQNS
3- 104

MCDONNELL DOUGLAS ASTRONAUTICS COMPAnVNY - EAST



,PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Specimens tested in the transverse rolling direction also exhibit greater

creep strain than those tested in the longitudinal direction in two of the three

comparisons (Figures 3-86 to 3-88). However, the variation is not sufficient to

firmly conclude that this variable has any effect on creep response.

3.3.3 COMPARISON OF RENE' 41 STEADY-STATE DATA BASE AND SUPPLEMENTAL TEST RESULTS

As indicated in Section 3.3.2.1, modification of the original test matrix was

made in order to provide test data in the range of interest for metallic TPS. This

implies a difference between the steady-state data base and the supplemental data.

Comparisons of the lines of constant creep strain as predicted by the literature

survey equation (Equation 3-14) and the supplemental creep equation (Equation 3-15)

are shown in Figure 3-89. These results illustrate that the stress and temperature

range over which creep strains of interest were attained in supplemental testing is

less than that for the data base.

Further investigation into the comparison of these data sets using the dummy

variable technique resulted in the following equation:

Inc = -27.12779 + 18.63930T +.64311 Int (3-16)

+.25603 (Ina - 1.931)3

-.14118 Z In t -.18620 Z (In - 1.931)3

where e = creep strain, %

T = temperature, OK

t = time, hours

S= stress, MPa

Si1, supplemental steady state data
0, steady state data base

Because the last three terms are significant in the equation, a difference

between the two data sets is also indicated.
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3.3.4 RENE' 41 BASIC CYCLIC TESTS

3.3.4.1 Basic Cyclic Test Matrix. Four 100 cycle tests (3 specimens per test) were

conducted on .028 cm gage specimens to form the basic cyclic test matrix from which

an empirical equation for cyclic creep can be derived. Each of the specimens was

tested in the longitudinal rolling direction. Tests were conducted for 100 constant

load and temperature cycles (20 minutes per cycle). The tests were conducted at

temperatures of 1155, 1111, 1071, and 10310 K as listed in Table .3-6. Stress levels

at each temperature were selected, based on results of supplemental steady-state

results, to yield creep strains of up to .5%.

TABLE 3-6. RENE' 41 BASIC CYCLIC TEST MATRIX

Test
Test Temperature Stress
No. Specimen oK oF MPa Ksi

R39L 1111 1540 104. 15.1
1 R41L 68.7 9.97

R40L 39.0 5.66

R38L 1155 1620 66.5 9.65
2 R36L 56.9 8.26

R37L 46.7 6.78

R46L 1071 1470 135. 19.6
3 R42L 103 15.0

R43L 68.7 9.96

R54L 1031 1400 275. 39.9
4 R52L 208. 30.1

R53L 142. 20.6

This portion of the cyclic tests are designated as Rene' 41 cyclic tests 1 thru 4.

Data are presented in Appendix E-3.

3.3.4.2 Test Results and Analysis. Cyclic creep strain results for the twelve

specimens in test 1 through test 4 are presented in Figures 3-90 thru 3-93.

The following equation was developed using data obtained from the hand faired

curves of these twelve tests. This data consisted of strain values taken at 5

cycle intervals from the hand faired curves. Creep times were the accumulated cycle

time at maximum load and temperature, therefore for the basic cycles the time was

33 hours/cycle or 1.67 hours/5 cycles.
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0.30,

RENE 41
- - - - BASIC CYCLIC TEST 4 R54L

PREDICTIONS BASED ON EQUATION 3-17

T= 10330K0.0.,

2 40 60 8 10 120

CYCLES

FIGURE 3-90 RENE'41 BASIC CYLIC CREEP TEST AT 10330 K

0.3

RENE 41

PREDICTIONS BASED ON EQUATION 3-17
0.2

T= 1072oK
R42L

0.1 -

w, R43L

0 20 40 60 80 100 120
CYCLES

FIGURE 3-91 RENE '41 BASIC CYLIC CREEP TEST AT 10720K
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0.5

RENE'41
- - - -- - BASIC CYCLIC TEST I

PREDICTION BASED ON EQUATION 3-17 R39L

0.4

T= 11loK

S0.2R4L -- --

00.2

R40L

0 40 6010 120
CYCLES

FIGURE 3-92 RENE'41 BASIC CYCLIC CREEP TEST AT 11110K

1.0

RENE 41
- - - BASIC CYCLIC TEST 2
- PREDICTIONS BASED ON EQUATION 3-17

/ R36L

FIGURE 3-93 RENE'41 BASIC CYCLIC CREEP TEST AT 1155K
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Inc = -39.55860 + 29.13646T + .71922 Int + .92125 (ina - 1.931) (3-17)

-.000016a2 + .08183 (Ina - 1.931) 3 - .000125 toT + .0000105t3

This equation has a standard error of estimate of .1397 on the logarithm of

strain and a multiple correlation coefficient of .9888. The residual plots

(In Eactual - in .calculated vs. variable) for this equation are shown in Figure

3-94.

This equation is based on creep strain data read at 5 cycle intervals from

the hand faired creep strain curves. In the basic cyclic tests 1, 3, and 4

(Appendix E-3) small negative creep strains were obtained up to 15 cycles. For

analysis purposes the strains at 1 cycle, which were less than -.03%, were added

to the creep curves so that all the creep data would be positive. Comparisons of

creep strain predictions with test data are shown in Figures 3-90 through 3-93.

3.3.5 COMPARISON OF RENE' 41 CYCLIC AND SUPPLEMENTAL STEADY-STATE DATA

3.3.5.1 Test Data Comparison. Comparison of the supplemental steady-state equation

(Equation 3-15) which the cyclic creep equation (Equation 3-17) reveals a difference

in form. Specifically, the t3 term in the cyclic creep equation which allows strain

rate to increase with time (Reference Figures 3-90 to 3-93), and the toT inter-

action term. However, in comparing the two data sets, using the dummy variable

technique, no differences could be established. Analysis of the combined data sets

resulted in an empirical equation of the same form as that for the supplemental

steady state data (Equation 3-15). None of the terms indicating differences in the

two data sets were determined to be significant.

Direct comparisons of supplemental steady-state and cyclic data are shown

in Figure 3-95.
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0 T.E = 5 KOURS -15 C L

0.01

o SUPPLEMENTAL STEADY STATE 11550K

* CYCLIC 11550K

0 SUPPLEMENTAL STEADY STATE 11ll0K

*CYCLIC 1111 0K

3HOURS CYCYC
1.0

1 10 100 100
STRESS -MPa

FIGURE 3-95 COMPARISON OF CYCLIC AND SUPPLEMENTAL STEADY-STATE CREEP DATA
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3.3.5.2 Microstructure Comparison. The microstructure of the nickel-base Rene' 41

alloy before test is shown in Figure 3-96. Figures 3-97 and 3-98 show the structure

after creep exposure. The as-received material has a typical solution annealed

structure, consisting of stringers of carbides in a gamma solid solution matrix.

After solution treatment and aging, carbide precipitation is evident at the grain

boundaries and a subsurface zone depleted of precipitates has formed. Such zones

are formed because diffusion and oxidation processes deplete the material adjacent

to the surface of the less mobile alloying elements (such as chromium and aluminum).

Figures 3-97 and 3-98 show that pronounced changes have occurred in the micro-

structure of this alloy after creep exposure. Exposure at 1072 0K and 137.9 MPa has

caused coarsening of the grain boundary carbides and an increase in the extent of the

subsurface depletion zone. Exposure at 11550K and 41.4 MPa has a more pronounced

effect, resulting in additional coarsening of precipitates both at the grain bound-

aries and within the grains, in addition to a more extensive subsurface depletion zone.

However, no differences can be observed at this magnification between the cyclic and

steady state microstructures of specimens creep tested at similar temperatures and

stress levels.

3.3.6 RENE' 41 CYCLIC TESTS FOR EVALUATION OF ADDITIONAL VARIABLES

3.3.6.1 Effect of Time Per Cycle. Comparison of Rene' 41 cyclic test No. 8 (speci-

mens R66L, R64L, and R65L) with Rene' 41 cyclic test No. 2 (specimens R37L, R36L, and

R38L) are presented in Figure 3-99 for equal total times at load. Test 8 is a

replicate of test 2 except that the time at load and maximum temperature is 10

minutes instead of the 20 minutes used in test 2. Based on the comparison, it

cannot be concluded that time per cycle has any effect on Rene' 41 creep strains.

3.3.6.2 Effect of Atmospheric Pressure. Cyclic tests 13 and 14 were replicate

idealized trajectory tests except that a simulated atmospheric pressure profile was
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ALLOY: RENE' 41 * :.
CONDITION: AS-RECEIVED
ETCHANT: KALLING'S REAGENT*
MAG: 500X
ASTM GRAIN SIZE 6
THICKNESS 0.027 cm

ALLOY: RENE' 41

CONDITION: SOLUTION TREATED AT 1394 0K
AGED AT 11720K e4

ETCHANT: KALLING'S REAGENT*

MAG: 500X

ASTM GRAIN SIZE 6 -

THICKNESS 0.027 cm

*2gCuC1 2, 40 ml HC1,
60 ml ETHONOL, 40 ml H20

FIGURE 3-96 MICROSTRUCTURE OF RENE' 41 PRIOR TO CREEP EXPOSURE
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ALLOY: RENE' 41
CONDITION: TESTED (CYCLIC)
APPLIED STRESS: 55.2 MPa
TEST TEMPERATURE: 11550K ,
EXPOSURE TIME: 100 CYCLES
ETCHANT: KALLING'S RAEGENT
MAG: 500X
ASTM GRAIN SIZE 6
THICKNESS 0.027 cm

SPEC. NO. R36L

ALLOY: RENE'41
CONDITION: TESTED (STEADY STATE) j
APPLIED STRESS: 41.4 MPa ,4  k
TEST TEMPERATURE: 11550K
EXPOSURE TIME: 160 HOURS
ETCHANT: KALLING'S REAGENT
MAG: 500X
ASTM GRAIN SIZE 6
THICKNESS 0.028 cm

SPEC. NO. R23L

FIGURE 3-98 MICROSTRUCTURE OF RENE' 41 AFTER CREEP EXPOSURE AT 11550K
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ALLOY: RENE' 41
CONDITION: TESTED (CYCLIC)
APPLIED STRESS: 137.9 MPa
TEST TEMPERATURE: 1072 0K
EXPOSURE TIME: 100 CYCLES
ETCHANT: KALLING'S REAGENT
MAG: 500X
ASTM GRAIN SIZE 6
THICKNESS 0.027 cm

SPEC. NO. 46L

ALLOY: RENE' 41
CONDITION: TESTED (STEADY STATE)
APPLIED STRESS: 137.9 MPa
TESTTEMPERATURE- 1061 0K
EXPOSURE TIME: 100 HOURS
ETCHANT: KALLINGS RAEGENT
MAG: 500X
ASTM GRAIN SIZE 6
THICKNESS 0.027 cm

SPEC. NO. RIO4L

FIGURE 3-97 MICROSTRUCTURE OF RENE' 41 AFTER CREEP EXPOSURE AT 1061 AND 10720K
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0.5

O RENE '41 TEST 8
100 CYCLES AT 10 MINUTES/CYCLE

O RENE '41 TEST 2 "
0.4 50 CYCLES AT 20 MINUTES/CYCLE

0.3

0.2

0.1

0 Ia 2D 30 40 50 60 70 80
STRESS - MPa

FIGURE 3-99 RENE '41 CYCLIC CREEP STRAINS AS A FUNCTION OF
TOTAL TIME AT LOAD AT 1155 0K

3-117

MCDONNELL DOUGLAS ASTRONAUTICS COMWPANV . EAST



' PREDICTION OF CREEP IN PHASE I NAS-1-11774

- METALLIC TPS PANELS SUMMARY REPORT

applied in test 14 while in test 13 the pressure was maintained constant at 1.3 Pa.

Data for these two tests are presented in Appendix E-3. Comparison of creep strain

results for the corresponding specimens in these tests are shown in Figure 
3-100.

Although the creep strains are higher for corresponding specimens using the constant

pressure (test 13), the variation of approximately 10% is not sufficient to conclude

that atmospheric pressure has any effect on a creep strain response.

3.3.6.3 Effects of Time Between Cycle. Tensile specimens R39L, R41L, and R4OL were

tested to 100 cycles at 1111K (cyclic test No. 1) as part of the basic cyclic tests

for Rene' 41. Several weeks subsequent to completion of this test, the specimens

were tested for an additional 50 cycles. This additional cycling is designated as

cyclic test No. 11. Data for the test are presented in Appendix E-3. Creep strain

results are shown in Figure 3-101. Comparison of creep rates at the end of test I

with those obtained in test 11 indicates a continuation of the slope. To determine

if high temperature recovery was occurring, an additional test was performed (test

No. 10, specimens R70L, R71L, and R72L) in which the load was maintained for 50

minutes (see Figure 2-24(a) instead of the usual 20 minutes. High temperature

recovery usually occurs when a specimen is subjected to elevated temperature and no

load conditions. By maintaining the load until the temperature is lowered, high

temperature recovery should be prevented from occurring.

Data for the test are presented in Appendix E-3. Comparison of this test (No.

11), which did not have high temperature recovery, with one that could have high

temperature recovery (test No. 1) revealed that there were differences between the

two tests but not in the direction anticipated (See Figure 3-102). If high tempera-

ture recovery were occurring, the creep strains for test No. 1 should have been

greater than test No. 10. Since the opposite is true, it does not appear that high

temperature recovery is occurring. In addition, it appears that for test No. 10 a

portion of the creep is occurring during the lower temperature portions of the profile.
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0.30

- - -' - TEST 14 (VARIABLE PRESSUR E)
R76L

0 I

R79L
0.20

0 20 4 60 0 0 ; 000 10 1

CYCLE TIME AT STRESS = 20 MINUTES

TEST TEMPERATURE = 
11110K SPECIMEN R39L

lo1l MPa0.6 oo Jo

TEST I TEST II

0.4

o SPECIMEN R41L
68 0 MPa

0.21

. SP ECIMEN R40L
..---- 39.2 MPa

20 40 60 80 100 120 140 160
CYCLES

FIGURE 3-1011RENE '41 CYCLIC TEST NO. 11 - CONTINUATION OF RENE '41
BASIC CYCLIC TEST NO. 1
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TEMP PROFILE

STRESS PROFILE
(TEST 10)

"-

I. STRESS PROFILE

(TEST 1)

TIME

0.3

RENE 41 CYCLE
TEST 10 /

0.2> +1.96 Sy BAND

"/ -RENE 41 CYCLIC

0. / TEST 1
0.1 '

0 20 40 60 80 100 120 140 160

STRESS - MPa

FIGURE 3-102 EFFECT OF INCREASED TIME AT LOAD ON RENE'41 AT 1111oK
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3.3.7 STEPPED STRESS CYCLIC TESTS

Three cyclic tests were conducted where stress was maintained constant within

each cycle but was varied as a function of cycle in order to allow an assessment of

the materials hardening behavior. ,Data for these tests (Rene'':41 tests 5, 6, and 7 are

presented in Appendix E-3.

In the first of these tests, Rene' 41 cyclic test 5 (specimens R51L, R47L, and

R48L) stress was increased at cycle 16 through 50 and then decreased to the original

level for the remaining 50 cycles as shown in Figure 3-103. Also shown in the figure

are comparison of test results with predictions based on the time hardening theory

of strain accumulation in conjunction with the cyclic creep equation (Equation 3-17).

Predictions based on strain hardening (not shown) were up to 77% higher than those

based on time hardening.

Increasing and decreasing stress history tests were also conducted on Rene' 41

tensile specimens. These were Rene' 41 cyclic test No. 6 (specimen R60L, R58L, and

R59L) and Rene' 41 cyclic test No. 7 (specimens R63L, R61L, and R62L) respectively.

Both tests were conducted at 1111K (15400 F). Data for these tests are presented

in Appendix E-3.

Comparisons of test creep strain results with predictions based on time hardening

creep accumulation theories in conjunction with Equation (3-17) are shown in Figures

3-104 and 3-105. Predictions based on the strain hardening theory of creep accumula-

tion were found to be approximately the same as for time hardening in predicting

strains for test 6 (increasing stress). For test No. 7 however, strain hardening

predictions were found to be up to 77% higher than the time hardening predictions

which were already up to 30% higher than test values. Data comparisons show little

creep strain difference between the increasing vs decreasing step stress tests at

100 missions.
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140
STRESS -
TEMPERATURE

120

TEMPERATURE SPECIMEN R51L

100

SPECIMEN R47L
STRESS 80 . . .

[ S - -

a 60 SPECIMEN R48L

-TIME/CYCLE 40

CYCLE TIME AT STRESS = 20 MINUTES
20

0 20 40 60 80 100
CYCLES

0.6

. - - - - TEST DATA SPECIMEN R51L
-- - PREDICTIONS

0.4

cSPECIMEN R47L

In

0 .2

/ ,- -... --0 SPECIMEN R48L

0
0 20 40 60 80 ' 100 120

CYCLES

FIGURE 3-103 EFFECT OF VARIATION OF STRESS PROFILE

BETWEEN CYCLES FOR RENE'41 AT 11110K
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140

STRESS - 120 -SPECIMEN R60Lr

TEMPERATURE

100
TEMPERATURE - SPECIMEN R58L ,.....

80 ..... .

Ew SPECIMEN R59L -
F 60 .....-

TI _I TIME

-TIME/CYCLE TIME

CYCLE TIME AT STRESS = 20 MINUTES

0 20 40 60 80 100
CYCLES

0.5

0./ SPECIMEN R60L
0.4 -

- ---- -TEST DATA
PREDICTIONS

0.3

PECIMEN R58L

0.2

w

SPECIMEN R59L

0.1 .0

-0.1
0 20 40 60 80 100 120

CYCLES

FIGURE 3-104 EFFECT OF INCREASING STRESS ON CREEP OF RENE'41 AT 11110K
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140

STRESS- EN
TEMPERATURE 120SPECIMEN R63L

TEMPERATURE 100
.... SPECIM N R61L L

T0U So .... D, -

STRESS I

SI ..SPECIM N R62L " .
60 *.

TME
TIME/CYCLE

CYCLE TIME AT STRESS = 20 INUTES 20

0 20 40 60 80 100

CYCLES

0.5

- - - - TEST DATA SPECIMEN R63L
0.4 - PREDICTIONS

0.4 -

0.3 -a

OF , SPECIMEN R61L

0.2

00 SPECIMEN R62L

0.1 "D'

0 20 40 60 80 100 120
CYCLES

FIGURE 3-105 " EFFECT OF DECREASING STRESS ON CREEP OF RENE'41 AT 1111 0K
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3.3.8 TRAJECTORY TESTS

Five cyclic trajectory tests were conducted using Rene'41 tensile specimens.

Data for these tests, Rene' 41 cyclic tests 9, 12, 13, 14, and 15 are presented in

Appendix E-3. These tests are a two-step stress trajectory profile with constant

maximum temperature of 1111 0 K (1540*F) and constant pressure (test 9), an idealized

trajectory test with a two-step temperature profile at 1155 0K and 1111K (test 12),

two idealized trajectory tests (test 13 and 14) with a maximum temperature of 1111*K

(comparison of test 13 and 14 on the basis of atmospheric pressure variation is

presented in Section 3.3.6.2), and a simulated mission test (test 15) using represen-

tative Shuttle stress, temperature, and pressure profiles.

Comparison of creep strain results for tests 9, 12, 13, and 15, based on the

time hardening theory of creep accumulation, are shown in Figures 3-106 through 3-109

respectively. Although the time hardening theory yielded the best predictions for

this series of tests,.all strain predictions are significantly lower than test

results in the idealized and simulated mission tests where high stresses are main-

tained beyond the peak temperature portion of the profile. This behavior is the

same as noted in comparing results of test 1 and 10 in Section 3.3.6.3.

The temperature and stress steps that were used to perform the trajectory

analysis are presented in Appendix (E-3-25). In this analyses 10 steps of 200

seconds each were used starting with the data measured at 400 seconds into the

trajectory.

3.3.9 Rene' 41 CONCLUSIONS

Rene' 41 tensile specimens were tested at stead-state conditions over the
temperature range of 964 0K (12750F) to 11800K (16650F) over approximately 200

hours or creep strains of up to approximately .5% @ 50 hours. The following

empirical regression equation was developed for these data:

In e = -35.21304 +26.34069 T +.55687 In t +.02807 (ln a)3  (3-15)
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An effect of material gage on creep response was noted in both the literature

survey data base and supplemental test results. Thicker gage specimens (.051 cm)

were observed to creep faster than the thin gage (.027 cm) specimens in the supple-

mental tests. No differences in creep response due to material rolling direction

were observed.

The following empirical regression equation was developed for cyclic test

data:

In E = -39.55860 +29.13646 T +.71922 In t -.92125 (ln a -1.931) (3-17)

-.000016 a2 +.08183 (ln a - 1.931) 3 -.000125 taT +.0000105t
3

This equation is applicable over the temperature range of 1031
0K (14000F) to 11550K

(16200F) for times up to 33 hours (100 cycles at 20 mintues per cycle).

Comparison of supplemental steady-state data and cyclic data showed that

no difference existed in these data sets.

No effects on creep strain due to variation of time per cycle (for the same

total time) or atmospheric pressure could be determined. Significant increases

in creep strains were noted in tests where stress was maintained on the specimen

while temperature was being decreased rapidly. This would indicate that creep

can occur at a low temperature for Rene' 41.

Use of strain and time hardening creep accumulation theories in predicting

the complex trajectory test data resulted in low predictions (approximately 40%

below test value). The time hardening theory provided the best predictions.

In predicting results for a simple two step trajectory however, the time hardening

theory yielded good agreement with test data. The variation in prediction

capability between simple and complex trajectories is attributed to the same

phenomena demonstrated in the case where using a simple single stress profile,

stress was maintained into the decreasing temperature portion of the cycle.
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3.4 TDNiCr - RESULTS OF TESTS AND DATA ANALYSIS

3.4.1 TDNiCr DATA BASE

3.4.1.1 Literature Survey. The TDNiCr steady-state data base is comprised of

1897 data points obtained from the following sources: NASA Marshall (Reference 16),

NASA Lewis (Reference 17), General Electric Company (References 18 and 19), and

McDonnell Douglas Corporation (References 20 and 21).. Data from the above sources

were reviewed and tests with creep strains greater than approximately 0.5% at 100

hours were eliminated. Killpatrick (Reference 30) has found that TDNiCr creep

tests which have creep strains greater than 0.5% at 100 hours are suspect of

improper material condition. The literature data base is presented in Appendix F-1.

3.4.1.2 Data Base Analysis. Several equations of different forms were developed

for the data base. The following equation was selected for use in development of a

test matrix for TDNiCr.

In e = -12.43906 +.01930a +2.80992T -.00022t -.389450 +22.45187p +.35175 Int (3-18)
-1.12398 In

where c = creep strain, %

T = temperature, oK/100

o = stress, MPa

= i, longitudinal material direction
O, transverse material direction

= gage, cm

t = time, hours

This equation has a standard error of estimate of .6933, based on the logarithm

of strain, and a multiple correlation coefficient of .7750, indicating a larger

degree of scatter in this data than had been present for the other material data

bases obtained for this program. Both material gage and rolling direction are

indicated to be significant, independent variables. The residual plots (in E
actual

-In Ecalculated vs. variable) for this equation are shown in Figure 3-110.

An empirical equation was also derived for a portion of the data base consider-

ed to be most representative of current TDNiCr manufacturing technology.
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These data, which were the portion of the data base obtained from NASA Lewis

(Reference 17) resulted in the following empirical equation:

In E = -3.16177 -2.86860 (1/T) +.36069 In t +.54690 Ina (3-19)

Material gage and rolling direction do not appear in this equation, since

these data were all .025 gage tested in the longitudinal rolling direction.

The equation has a standard error of estimate of .5552 on the logarithm of

strain and a multiple correlation coefficient of .8394. The residual plots (In

(In Eactual -in ccalculated vs. variable) for this equation are shown in Figure 3-111.

No attempts were made to incorporate interaction terms or to optimize for a better

fit of the data. This equation will be used for purposes of comparing with cyclic

data in Section 3.4.5.1.

3.4.2 TDNiCr SUPPLEMENTAL STEADY-STATE TESTING

3.4.2.1 TDNiCr Supplemental Steady-State Test Matrix - A total of sixteen supple-

mental steady-state tests were conducted per conditions in 
Table 3-7. Ten of the

tests were for .0254 cm (.010 inch) thick material tested in the longitudinal

rolling direction. Three of the remaining tests were conducted on .0533 cm

(.021 inch) thick specimens tested in the longitudinal 
rolling direction, and three

were conducted on .0254 cm. (.010 inch) specimens tested in the transverse 
rolling

direction.

Test values of stress and temperature were designed to yield 
creep strains

ranging from 0.33% in 200 hours to 0.10% in 200 hours based on Equation 3-18 pre-

dictions. These lines of constant creep strain and the test matrix are 
shown in

Figure 3-112. The curve representing 0.33% strain in 200 hours is observed to be very

close to the upper limit of the data base at temperatures greater than 1255
0K.
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FIGURE 3-112 TD NiCr SUPPLEMENTAL STEADY-STATE EXPERIMENTAL DESIGN

TABLE 3-7 - TDNiCr SUPPLEMENTAL STEADY-STATE TESTS

TEST MATERIAL MATERIAL GAGE TEMPERATURE STRESS
ROLLING

SPECIMEN DIRECTION CM INCHES OK OF MPa ksi

TD21L LONGITUDINAL 0.0254 0.010 1089 1500 110.3 16.0

TD25L 1200 1700 34.5 5.0

TD24L 1200 1700 62.1 9.0

TD23L 1200 1700 110.3 16.0

TD28L 1340 1950. 17.3 2.5

TD27L 1340 1950 34.5 5.0

TD26L 1340 1950 62.1 9.0

TD30L 1479 2200 17.2 2.5

TD32L 1479 2200 27.6 4.0

TD29L LONGITUDINAL 1479 2200 34.5 5.0

TD12T TRANSVERSE 1200 1700 62.1 9.0

TD11T 1200 1700 110.3 16.0

TD13T TRANSVERSE 0.0254 0.010 1340 1950 62.1 9.0

TD2L LONGITUDINAL 0.0533 0.021 1200 1700 62.1 9.0

TD1L 1200 1700 110.3 16.0

TD3L LONGITUDINAL 0.0533 0021 1340 1950 62.1 9.0
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It should be noted that a curve for 0.50% strain at 50 hours is not shown, as has

been done previously for the other materials under investigation, since this curve

is outside the data base. This is indicative of the low creep strains obtained with

TDNiCr material. The shaded area in Figure 3-112 represents the upper limits of

the data for this material and is also where several specimen stress rupture failures

occurred in the data base.

Creep strain results for each of the supplemental steady-state tests are pre-

sented in Appendix F-2. Included in this appendix are the elastic strains which

were determined at the start and the conclusion of the test.

3.4.2.2 Test Data Evaluation - Basic Test Matrix. A review of the supplemental

steady-state data indicates some inconsistency, in that some tests at 1340 0K

exhibit higher creep strains than those at 14790K. This is demonstrated in the

50-hour creep strains shown in Figure 3-113. The usefulness of developing an

equation for this data is, therefore, questionable.

Subsequent comparisons of cyclic and supplemental steady-state data are made

(Section 3.4.5) which indicate no difference between these sets of data. Therefore,

empirical equations developed for the basic cyclic tests (cyclic tests 1-6) will be

considered applicable to the supplemental steady-state data also.

3.4.2.3 Effects of Gage and Rolling Direction. Comparisons of supplemental steady-

state creep data for tests conducted on specimens of .0254 and .0533 cm and

on specimens in longitudinal and transverse directions are shown in Table 3-8 for

three different times. Review of the data indicates that the .0533 cm specimens

experienced greater creep strains than the .0254 cm specimens, and that specimens

tested in the transverse rolling direction experienced greater creep strain than

those tested in the longitudinal rolling direction. The only exceptions to this

trend were in the case of specimen TD12T (.0254 gage, transverse direction) where

very low creep strains were attained, which may indicate an invalid test. These
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0
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FIGURE 3-113 TDNiCr SUPPLEMENTAL STEADY-STATE DATA AT 50 HOURS

TABLE 3-8
COMPARISON OF GAGE AND ROLLING DIRECTION EFFECTS

IN SUPPLEMENTAL STEADY-STATE TESTING

TIME= 0.25 HR TIME = 20 HR TIME= 100 HR
CONDITION 0.0254 0.0254 0.0533 0.0254 0.0254 0.0533 0.0254 0.0254 0.0533

LONGIT TRANS LONGIT LONGIT TRANS LONGIT LONGIT TRANS LONGIT

1200oK (1700 0F) 0.040 0.094 0.238 0.290 0.380 - 0.473 - -
110 mPa (16 ksi) TD23L TD11T TD1L TD23L TD11L TD23L

12000K (1700 0F) 0.009 0.002 0.026 0.026 0.008 0.037 0.028 0.032 0.145
62 mPa (9 ksi) TD24L TD12T TD2L TD24L TD12T TD2L TD24L TD12L TD2L

13400K (1950 0F) 0.004 0.025 0.039 0.067 0.300 0.325 0.131 0.990 -
62 mPa (9 ksi) TD26L TDI3T TD3L TD26L TDI3T TD3L TD26L TD13T
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results agree with the prediction for the steady-state data base in Equation 3-18

where creep strain increases with increasing gage, and is greater for the trans-

verse direction (e=0) than the longitudinal direction (0=1).

3.4.3 COMPARISON OF STEADY-STATE DATA BASE AND SUPPLEMENTAL TEST RESULTS

Comparison of supplemental data at 5 hours and 50 hours, with predictions

based on the data base equation (Equation 3-18) are shown in Figure 3-114. This

comparison demonstrates that creep strains attained in supplemental testing are

generally about one-half of strains predicted from the data base.

3.4.4 TDNiCr BASIC CYCLIC TESTS

3.4.4.1 Basic Cyclic Test Matrix. Evaluation of TDNiCr, from the standpoint of

creep deflections in TPS panels, represents a completely different case than the

other three materials studied under this program. This is primarily because

relatively little creep is evident in this material before failures occur. There-

fore, the requirement for definition of creep deflection is minimized in the design

criteria for TDNiCr TPS. Because of this, less emphasis has been placed on evalua-

tion of the steady-state data base and comparison of this data base with supple-

mental steady-state tests. More emphasis has been placed on definition of limits

of temperature and stress at which failure occurs. In this effort, additional

cyclic tests were conducted when necessary to obtain failures at each of four test

temperatures. A summary of the basic cyclic tests performed is presented in Table 3-9.

Basic cyclic tests were conducted on .0254 cm specimens in the longitudinal

direction at temperatures of 10890 K (15000 F), 1200 0K (17000F), 13400K (19500F),

and 1479 0K (22000F). These tests consisted of cycling specimens at constant

loads and temperatures for up to 100 cycles using a constant load and temperature

over a 20-minute cycle time period. Test stress levels were based on the data

base boundary as presented in Figure 3-112. Data for this portion of the cyclic
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DATA BASE CREEP PREDICTIONS (EQN 1)

FIGURE 3-114 COMPARISON OF DATA BASE PREDICTIONS AND
SUPPLEMENTAL TEST RESULTS
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TABLE 3-9 TDNiCr BASIC CYCLIC TESTS

CYCLIC TEMPERATURE STRESS
TEST TEST

NO. SPECIMEN oK OF MPa KSI

1 TD96L 1089 1500 85.7 12.43
TD95L 1089 1500 103.3 14.98
TD98L 1089 1500 124.2 18.02

2 TD80L 1200 1700 57.2 8.30
TD44L 1200 1700 73.8 10.7
TD81L 1200 1700 87.7 12.72

3 TD57L 1339 1950 30.6 4.44
TD55L 1339 1950 47.6 6.90
TD67L 1339 1950 59.2 8.59
TD59L 1339 1950 60.3 8.74

4 TD62L 1478 2200 16.3 2.36
TD63L 1478 2200 29.1 4.22
TD35L 1478 2200 33.7 4.89
TD102L 1478 2200 44.3 6.42

NOTES:
1. ALL SPECIMENS 0.024 CM
2. ALL SPECIMENS TESTED IN LONGITUDINAL ROLLING DIRECTION.
3. ALL TESTS - 20 MINUTES/CYCLE, 100 CYCLES.
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tests, designated as Tests 1 through 6, are presented in Appendix F-3.

3.4.4.2 Test Results and Analysis. Cyclic test data was found to be generally more

consistent (less scatter) than for the steady-state tests. The following equation

was developed using data obtained from the hand faired basic cyclic creep curves

(Figures 3-115 to 3-118). The data consisted of approximately 5 points per test

spaced in such a manner as to describe the curve. For example, a test run for 60

cycles had strains selected at 6, 15, 30, and 60 cycles while the 100 cycle tests

had strains selected at 6, 15, 30, 60 and 100 cycles from the hand faired curves.

Creep times were the accumulated cycle time at maximum load and 
temperature, there-

fore, for the basic cycles the time was .33 hrs/cycle or 2 hrs/6 cycles.

In E = -3.48443 - 10.37282 (-) +.28314 in t + 2.00118 In a (3-20)

This equation has a standard error of estimate .2603 and a multiple R of .9128.

The residual plots (in cactual - In Ecalculated ) vs. variable for this equation

are shown in Figure 3-119. Because of the low TDNiCr creep strains obtained, it

was judged that further refinement of the equation would not have a significant

effect on subsize panel predictions. Therefore, no attempts were made to add

additional interaction terms to further optimize this equation for a better fit of

the data.

Effort was placed on testing at stress levels such that some failures would be

obtained at each of the test temperatures. Combination of stress and temperature

at which failures occurred are indicated in Figure 3-120. Also shown are the last

measured creep strain before failure and stresses at which tests were completed

without failure. No creep strains are available for the 1200 0K temperature tests,

since all failures occurred during the first cycle before measurements could be

obtained.
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.1!6 I I I
TDNiCr

--- -BASIC CYCLIC TEST 1
- - - -PREDICTIONS BASED ON EQUATION 3-20

.12 TD98L (BROKE ON CYCLE 87)

T=10890 K

S.08 .

TD95L

.04

TD96L

0 20 40 60 80 100 120
CYCLES

FIGURE 3-115 TDNiCr BASIC CYCLIC CREEP TEST AT 10890 K
.12

TDNiCr
--- -BASIC CYCLIC TEST 2

S PREDICTIONS BASED ON EQUATION 3-20 - " TD81L

T=12000K
.08

STD44L

O , -" . . -TD80L

0 20 40 60 80 100 120
CYCLES

FIGURE 3-116 TNDiCr BASIC CYCLIC CREEP TEST AT 1200 0K
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.12 r
TDNiCr

TD59L (BROKE ON CYCLE 46 BASIC CYCLIC TEST 3
S- .. . -PREDICTIONS BASED ON EQUATION 3-20

0TD67L T = 1339oK

S.08 _ -

== TD55L.

.04

T057L

0 20 40 60 80 100 120
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FIGURE 3-117 TDNiCr BASIC CYCLIC CREEP TEST AT 13390K

.24

TDNiCr
... BASIC CYCLIC TEST 4
.- -- . PREDICTIONS BASED ON EQUATION 3-20

.18
TD102L (BROKE ON CYCLE 57) T = 14780K

I -

0 . 0 o 
TD63L

_7=

0
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FIGURE 3-118 TDNiCr BASIC CYCLIC CREEP TEST AT 1478'o
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FIGURE 3-120 TDNiCr CYCLIC TEST DATA
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3.4.5 COMPARISON OF CYCLIC AND STEADY-STATE DATA

3.4.5.1 Test Results. Comparison of the stress-temperature range of test data is

shown in Figure 3-121 for the steady-state data base, supplemental steady-state

tests, and the cyclic tests.

Comparison is made here between cyclic data and both the steady-state data base

and supplemental steady-state results. Presented in Figures 3-122 and 3-123 are

direct comparisons of cyclic and supplemental data, shown at 2 hours (6 cycles) and

20 hours (60 cycles) respectively. Because no clear difference between these data

is indidated, the empirical equation developed for cyclic data (Equation 3-20) is

considered applicable to the supplemental steady state data.

A comparison of cyclic and steady-state data base creep strains is shown in

Figure 3-123. Plotted in the figure are ratios of creep strains as predicted by

the literature survey steady-state creep equation (Equation 3-18) and the cyclic

creep equation (Equation 3-20) for two different times. These ratios substantiate

that the cyclic and supplemental steady-state test creep strains are less than

those of the steady-state data base.

3.4.5.2 Microstructure Comparison. The microstructure of the TDNiCr alloy before

and after creep exposure is shown in Figure 3-124. The as-received material is char-

acterized by very large directional grains and a fine dispersion of thoria (not

visible). Extensive grain boundary tearing was observed in both the cyclic and steady

state creep specimens tested at 13390K and 62.1 MPa. However, no differences between

the cyclic and steady-state microstructures can be observed at 50OX magnification.

3.4.6 CYCLIC TESTS FOR EVALUATION OF OTHER VARIABLES

3.4.6.1 Effect of Time Per Cycle. TDNiCr cyclic test 11 was conducted to provide

data for evaluation of the effect of time per cycle on creep response. Data for
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FIGURE 3-121 DATA RANGE COMPARISON - TDNiCr
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FIGURE 3-123 COMPARISON OF CALCULATED VALUES OF CYCLIC CREEP (eCy, EQN 3-20)
AND STEADY-STATE DATA BASE CREEP (eSS, EQN 3-18)
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ALLOY: TDNiCr
CONDITION: AS-RECEIVED
ETCHANT: 10% (NH4)2S208
MAG, 500X
THICKNESS 0.024 cm

-~l -- ;:Bgf.

ALLOY: TDNiCr
CONDITION: TESTED (CYCLIC)
APPLIED STRESS: 60.3 MPa
TEST TEMPERATURE: 13380K
EXPOSURE TIME: 100 CYCLES
ETCHANT: 10% !NH4)S20 8  I
MAG: 500X
THICKNESS 0.026 cm

SPEC. NO. TD59L

ALLOY: TDNiCr
CONDITION: TESTED (STEADY STATE)
APPLIED STRESS: 62.1 MPa
TEST TEMPERATURE: 13381K
EXPOSURE TIME: 100 HOURS
ETCHANT: 10% (NH4)S208
MAG: 500X
THICKNESS 0.025 cm

SPEC. NO. TD26L

FIGURE 3-124 MICROSTRUCTURE OF TDNiCr BEFORE AND AFTER CREEP EXPOSURE AT 13380K
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this test are presented in Appendix F-3. This test was conducted using 10 minutes

per cycle at peak temperature (15320 K) and load. Comparison of results with data

from basic test No. 5 (20 minutes per cycle) are shown in Figure 3-125. Because no

effect of time per cycle on creep strain can be detected, it is assumed that the

empirical equation developed for 20-mintes-per-cycle data (Equation 3-20) will be

applicable to analysis of trajectory profiles where smaller analysis time incre-

ments are used.

3.4.6.2 Effect of Atmoshperic Pressure. TDNiCr cyclic test 8 and 10 are replicates,

except that in test 8 the atmospheric pressure was held constant at approximately

1.33 Pa (1 x 10- 2 torr), while in test 10 the atmospheric pressure was cycled to

represent a simulated Shuttle profile. Data for these tests are presented in Appendix

F-3. Comparison of creep strain results for corresponding specimens is shown in Figure

3-126. No significant variation can be attributed to the difference in pressure

profiles.

3.4.6.3 Effect of Time Between Cycles. Specimens TD85L and TD77L, cycled at

14790 K in TDNiCr test 6, were retested for an additional 50 cycles in test 12.

Data for this test are presented in Appendix F-3. This test was designed to deter-

mine if the creep rate is affected after specimens were allowed to relax for

several weeks.

Results, shown in Figure 3-127, indicate that although some re-initiation of

primary creep may have occurred, no significant strain rate changes can be

detected between the completion of the 100 cycles in the basic test (test 6) and

the initiation of the additional 50 cycles. Therefore, there is no clear sign

that this time delay has an effect on subsequent creep strains.
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FIGURE 3-125 TDNiCr CYCLIC CREEP STRAINS AS A FUNCTION OF TOTAL TIME AT LOAD
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COMPARISON OF TDNiCr IDEALIZED TRAJECTORY
TESTS FOR ATMOSPHERIC PRESSURE EFFECTS
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FIGURE 3-127 EFFECT OF TIME DELAY BETWEEN CYCLIC TESTS ON THE
CREEP BEHAVIOR OF TD NiCr
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3.4.7 COMPLEX TRAJECTORY CYCLIC TDNiCr TESTS

Four trajectory tests were conducted using TDNiCr tensile specimens. Data for

these tests, designated as TDNiCr tests 7, 8, 9 and 10, are presented in Appendix

F-3. These tests are: 1) a two-step stress trajectory profile with a maximum

temperature of 14790K and constant pressure -(test 7); 2) two idealized trajectory

tests (tests 8 and 100 with a maximum temperature of 1479 0K; test 8 has a constant

pressure profile and test 10 has a simulated pressure profile; 3) a simulated

mission test (test 9) using representative Shuttle stress, temperature and pressure

profiles. Comparison of tests 8 and 10 was made previously in Section 3.4.6.2. No

stepped stress cyclic tests were conducted on TDNiCr specimens. Two comparisons of

data from these tests will be investigated in this section.

The first comparison is between results of idealized trajectory tests (tests

8 and 10) and the simulated mission test (test 9). Creep strains resulting from

the simulated mission test are approximately 50 to 70%' of those attained in the

idealized trajectory tests. This difference is attributable to the lower tempera-

ture in the simulated mission test. Although the peak temperature in test 9 was

1479 0K at 800 seconds into the trajectory, temperature in the idealized trajectory

tests was maintained at 14790K over a longer period of time (Reference data in

Appendix F-3).

A second comparison is between complex trajectory test results and predictions

based on empirical equations (developed from tests 1-6) in conjunction with hard-

ening theories. Predictions of creep strains for TDNiCr tests 7, 8, 9 and 10, using

the cyclic creep equation (Equation 3-20), were found to be from 30% to 70% of test

strains at 100 cycles. Investigation showed that this was at least partly due to

prediction capability of (Equation 3-20) at 14790 K, where the complex trajectory tests

had been conducted. Therefore, for purposes of evaluation of the complex trajectory

tests, the following equation was developed for TDNiCr using 14790 K basic cyclic test
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data (tests 5 and 6).

In E = -11.4831 +2.2404 In a +.4127 In t (3-21)

Comparisons of predictions using this equation 
in conjunction with the strain harden-

ing theory of creep accumulation for the two-step stress profile (test 7) are shown

in Figure 3-128. Predictions using the time hardening theory were approximately 90%

of those using strain hardening.

Predictions using Equation 3-21 in conjunction with strain 
hardening are approxi-

mately 50% of values obtained in the idealized and simulated 
mission tests (tests

8, 9, and 10). This variation may be attributable to an effect of increasing 
creep

response in the case where load is maintained into the portions 
of the trajectory

profile where temperature is reduced. This effect was noted previously for Rene' 41.

3.4.8 TDNiCr CONCLUSIONS

Evaluation of TDNiCr, from the standpoint of creep deflections 
in TPS panels,

represents a completely different case than 
the other three materials studied

under this program. This is primarily because relatively little creep 
is evident

in this material before failures occur. Therefore, the requirement for definition

of creep deflection is minimized in the design criteria 
for TDNiCr TPS.

TDNiCr tensile specimens were tested at steady-state 
conditions over the

temperature range of 1089
0 K (1500F) to 1479

0K (22000 F) to approximately

200 hours. Significant scatter was observed in both the literature survey data

base and supplemental tests. The following empirical regression equation was

developed for the data base, showing both material 
thickness and rolling direction

to be significant variables.

in 6 = -12.43906 +.01930a +2.80992T -. 00022t -. 38945 +22.451874 (3-18)

+.35175 Int -1.12398 In4
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FIGURE 3-128 COMPARISON OF TEST DATA (TDNiCr TEST 7)
AND PREDICTIONS (EQUATION 3-21)
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Supplemental test results also showed that specimens tested 
in the transverse

direction crept faster than those tested in the longitudinal direction and that,

as is the case of Rene' 41, thinner gage crept less than the thicker material.

This phenomenon for TD NiCr was observed in References 17 and 30. An extensive dis-

cussion of the possible causes of this are presented in Reference 30 but in general

it appears to be a result of the variation in proc essing required 
to produce a

"cubic texture" in the sheet.

The following empirical regression equation was developed for cyclic test data:

In E = -3.48443 -10.37282 ( ) + .28314 In t +2.00118 Ino (3-20)

This equation is applicable over the temperature range of 1089
0K to 1479 0K

for times up to 33 hours (100 cycles at 20 minutes per cycle). No significant

difference could be determined between supplemental steady-state test data and

cyclic data sets.

Stress rupture failures were obtained at creep strains of approximately .11%

throughout the cyclic test temperature range. No effect of time per cycle (for

the same total time) or atmospheric pressure could be determined 
in cyclic testing.

Predictions were approximately 50% of trajectory cyclic creep test data.

The strain hardening theory of creep accumulation provided the best predictions

with time hardening theory yielding even lower values. This relationship between

predictions and test strains is the same as obtained for 
Rene' 41.

Atmospheric pressure and time between cycling do not appear to 
have a

significant effect on cyclic creep,
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4.0 CONCLUSIONS

In this phase of the program test results have demonstrated that there is no

significant difference between cyclic and steady-state creep strains (for the same

total time at load) for the alloys L605, Ti-6Al-4V, Rene' 41, and TDNiCr. A single

linear equation describing the combined steady-state and cyclic creep data, for each

alloy, resulted in standard errors of estimate higher than obtained for the invi-

vidual data sets. Creep strain equations were developed for both steady-state and

cyclic creep data using linear least squares analysis techniques. A non-linear

least squares analysis appeared to offer potential for lowering the standard error

of estimate but time prevented further exploration in this area. (See Appendix G-3.)

The prediction of strains that are produced by complex trajectory and simu-

lated mission tests (using equations based on simple cycles) was successfully

accomplished. A computer program was specifically written for this analysis. This

computer program is.based on time and strain hardening theories of creep accumula-

tion. For Ti-6Al-4V, and TDNiCr, the strain hardening theory of creep accumulation

provided the best predictions while for Rene' 41 time hardening and for L605 a com-

bination of strain and time hardening provided the best predictions.

In general, for the four alloys studied, no effects on creep strain due to

variation of time per cycle (for the same total time) or atmospheric pressure were

observed. A gage effect on creep response was noted in both the literature survey and

the supplemental steady-state creep data bases for L605, Rene' 41, and TDNiCr. For

L605 the thin gage material crept faster than the thicker while in the case of

Rene' 41 and TDNiCr the reverse was true. An effect of material rolling direction

on creep strains was observed in TDNiCr.

Significant data scatter was found to exist for both the literature survey

and supplemental steady-state creep data bases of TDNiCr. For TDNiCr stress-

rupture failures were obtained at creep strains of approximately .11% throughout

the cyclic test temperature range.
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Comparison of data obtained from idealized and simulated mission tests 
indicates

that cyclic creep response analyses can be performed through the use of the simpler

idealized approach.

Specific conclusions as they relate to the individual 
alloys are presented in

the specific alloy sections of this report.
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APPENDIX A

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (designated SI) was adopted by the Eleventh

General Conference on Weights and Measures in 1960. The units and conversion

factors used in this report are taken from or based on NASA SP-7012, "The Inter-

national System of Units, Physical Constants and Conversion Factors - Revised,

1969".

The following table expresses the definitions of miscellaneous units of

measure as exact numerical multiples of coherent SI units, and provides multiplying

factors for converting numbers and miscellaneous units to corresponding new numbers

of SI units.

The first two digits of each numerical entry represent a power of 10. An

asterisk follows each number that expresses an exact definition. For example, the

entry "-02 2.54*" expresses the fact that 1 inch = 2.54 x 10- 2 meter, exactly, by

definition. Most of the definitions are extracted from National Bureau of Standards

documents. Numbers not followed by an asterisk are only approximate representations

of definitions, or are the results of physical measurements.

ALPHABETICAL LISTING

To convert from to multiply by

atmosphere (atm) pascal (Pa) +05 1.0133*
Fahrenheit (F) kelvin (K) tk = (5/9) (tf 4 459.67)

foot (ft) meter (m) -01 3.048*

inch (in.) meter (m) -02 2.54*

mil meter (m) -05 2.54*

millimeter of mercury (mm Hg) pascal (Pa) +02 1.333
nautical mile, U.S. (n.mi.) meter (m) +03 1.852*

pound force (lbf) newton (N) +00 4.448*

pound mass (ibm ) kilogram (kg) -01 4.536*

torr (00 C) pascal (Pa) +02 1.333
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PHYSICAL QUANTITY LISTING

Area

To convert from to multiply by

foot 2 (ft2 ) meter2 (m2)  -02 9.290*

inch 2 (in2) meter2 (m2) -04 6.452*

inch 2 (in2) cemtimeter2 (cm2)  +00 6.452

Density

pound mass/foot 3 (pcf,lb /ft3)  kilogram/meter3 (kg/m3)  +01 1.602

pound mass/inch 3 (lb /inm) kilogram/meter3 (kg/m3 )  +04 2.768

pound mass/inch3 (ibm/in 3) gram/centimeter3 (g/cm3) +01 2.768

Force

kilogram force (kgf) newton (N) +00 9.807*

pound force (lbf) newton (N) +00 4.448*

Length

foot (ft) meter (m) -01 3.048*

inch (in.) meter (m) -02 2.54*

micron meter (m) -06 1.00*

mil meter (m) -05 2.54*

mile, U.S. nautical (n.mi.) meter (m) +03 1.852*

Mass

pound mass (Ibm)  kilogram (kg) -01 4.536*

Pressure

atmosphere (atm) pascal (Pa) +05 1.013*

millimeter of mercury (mm Hg) pascal (Pa) +02 1.333

newton/meter pascal (Pa) 00 1.00*

pound/foot2 (psf, lbf/ft2 ) pascal (Pa) +01 4.788

pound/inch 2 (psi, lbf/in2 ) pascal (Pa) +03 6.895

Temperature

Fahrenheit (F) Kelvin (K) tk 
= (5/9)(tf + 459.67)

A-2

MCDONNELL DOUGLAS ASTRSONAUICS C OMPANYV- CAST



-"tPREDICTION OF CREEP IN PHASE I NAS-L1-11774
2# METALLIC TPS PANELS SUMMARY REPORT

APPENDIX A - Continued

Volume

To convert from to multiply by

foot 3  (ft3) meter3 (m3) -02 2.832*

inch 3  (in3) meter 3 (m3) -05 1.639*

inch 3  (in3) centimeter3 (cm3 , cc) -01 1.639

PREFIXES

The names of multiples and submultiples of SI units may be formed by application of

the prefixes:

Multiple Prefix

10- 6  
micro (W)

0- 3

10-3 milli (m)

10- 2  centi (c)

10-1 deci (d)

103  kilo (k)

106 mega (M)

109  giga (G)
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APPENDIX C-I

L605 LITERATURE SURVEY CREEP DATA

This portion of Appendix C presents the literature survey data base. Portions
of this data base were used to develop the literature survey equation (3-3). The
source of this data is the Air Force Materials Laboratory report AFML-TDR64-116
(Reference 15).

All strains shown are total plastic strains. For informational purposes the
elastic strains are presented below for the individual tests in order of their
apperance in this section.

TEMPERATURE STRESS THICKNESS ELASTIC STRAIN,
TEST # ok MPa cm %

1
2 922 172.4 .013 .137
3 224.1 .177
4 275.8 .146
5 310.3 .813
6 172.4 .102 .087
7 189.6 .159
8 189.6 .111
9 224.1 .191

10 293.0 .212
11 1033 65.5 .013 .059
12 75.8 .131
13 96.5 .007
14 120.7 .074
15 224.1 .229
16 165.5 .051 .091
17 144.8 .066
18 75.8 .102 .048
19 86.2 .075
20 100.0 .074
21 103.4 .069
22 103.4 .071
23 165.5 .103
24 68.9 .203 .036
25 86.2 .053
26 137.9 .084
27 189.6 .163
28 1144 27.6 .013 .008
29 27.6 .020
30 62.1 .065
31 68.9 .132
32 22.8 .102 .019
33 41.4 .037
34 48.3 .019
35 55.2 .034
36 62.1 .056
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TEMPERATURE STRESS THICKNESS ELASTIC STRAIN,

TEST # Ok MPa cm %

37 65.5 .057

38 120.7 .084

39 27.6 .203 .016

40 1255 10.3 .013 .011

41 17.2 .024

42 24.1 .030

43 34.5 .039

44 16.5 .051 .015

45 31.0 .182

46 51.7 .065

47 65.5 .076

48 6.9 .102 .003

49 24.1 .024

50 25.9 .020

51 34.5 .032

52 48.3 .065

53 65.5 .079

54 13.8 .203 .008

55 17.2 .013

56 34.5 .034

57 55.2 .069

58 68.9 .062

59 75.8 .094
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ALLCY - LI G ALLOY - L "i ALLCY - LF,7
STRESS (MPA) - 172.4 STRESS (MPA) 275.8 STRESS (MPA) - 224.1

TEMP. (KELVIN) - 922 TEMP. (KELVIN) - 922 TEMP. (KELVIN) -. 22 r-
THICKNESS (CM) - .[13 THICKNESS (CM) - .13 THICKNESS (CM) - .013 Z

SOURCE - AFMLTC96-11F SOURCE - aFMLTCP6-11 SOURCE - AF LTCP6-116- 0

STRAIN (PCT.) TIME (FOUPS) STRATN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (OCUPS) : m
Zm

.0G7 .3 .011 1.3 .11 .1 r-

.017 .7 .022 2.3 .025 .? z

.223 1.1 .098 18.2 .329 .9

.,35 1.9 .171 42.5 .C33 2.

.042 2.- .235 69. .036 3.0

.046 3.5 .311 92.5 .040 4.0

.107 22. .341 116.0 .043 5. 1

.139 44. .397 138.2 .048 5.7 -o
E.172 7*46-0 13e .091 23.1 c
.172 722 .128 45.7

.163 7C.E

.194 94.

.225 117.3

.259 142.1

.293 165.9 m
S.327 19 0. 2 -

31.0

-I
ALLOY - L60 ALLOY - LS:5 ALLCY - LE09

STRESS (MPA) - 312.3 STRESS (MPA) - 172.4 STRESS (MPA) - 189.6
TEMP. (KELVIN) - 322 TEMP. (KELVIN) - 922 TEMP. (KELVIN) - 922
THICKNESS (CM) - .013 THICKNESS (CM) - .102 THICKNESS (CM) - .102

SOUFRCE - AFMLTCR%-16 SOURCE - AFVLTORS-116 SOURCE - AFVLTR6-116

STRAIN (PCT.) TIME (I-CURS) STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (FOURS)

.030 .3 .006 .4 .004 .2
048 . .010 1.1 .011 .5

.067 1.8 .00359 2.5 .014 1

.083 3.1 .010 3.4 .219 2.u

.176 19.9 .013 4.8 P .022 2.q z

.211 27.5 .024 22.L .026 4.1 >

.274 43.6 .29 46.9.. .030 4.9

.345 7 .4 .335 70.1 .050 24.4

.464 93,4 .04 93.9 .071 47.2 I
.045 122.5 .089 7.9
.034 144.F .09B 94.
.057 165.7 .134 117.8
.059 189.9



ALLOY - L ,  ALLCY - L% 5 ALLOY - L6.
STRESS (MPA) - STRESS (MPA) - 224.1 STRESS (MPA) - 293.

TEMP (KELVIN) - TEMP. (KELVIN) - 922 TEMP. (KELVIN) - 922

THICKNESS (CM) - 12 THICKNESS (CM) - .132 THICKNESS (CM) - •132
SOURCE - 4AFLT[:P6-11F SOURCE - AFrLTEP6-116 SOURCE - AFFLTCP-110

STRAIN (PCT.) TIME (PCUPS) STRAIN (PCT.) TIME ('OURS) STRAIN (PCT.) TIME (-OUPS) >
rO

• 3 .2 ..03 .4 22 .2 0zS03 .4 .014 1.4 .n1O ,5
0. .024 2.6 .023 1.1 n

004 . n27 3.1 .098 17.80 o0 1.92 2 19.3 176 42.9 > m

S9 2.7 •101 21.3 .21 8, m
. 07 3.5 .143 43.6 .27 0.6 mr-

S032 2 161 67.2 .345 11E.6 z
.043 4,. .181 94.9 .412 14

.046 6.5 .203 119. .475 12. 1

S:-57 93 5 .223 14 .4
0 E66 116. .237 163.5

75 14.. *262 188.2
.080 163.7 *284 211.6
.080 188.7 .304 235.fL
.087 212.1 .333 2 3.
193 237.2 .333

b V 91 121.i .353 3.7.1.9 284. .381 331.4

.097 3C6.6 .399 355.5

- .. 108 334.1 .421 379 6 ;
.104 356. .443 404.4 m-

.465 428.9 o

.488 453.2
ALLOY - LE05 -4

STRESS (MPA) - 65.5
TEMP. (KELVIN) - 1Z33
THICKNESS (CM) - .213 ALLOY - L6C5 ALLOY - L605

SOURC - AFLT - STRESS (MPA) - 75.8 STRESS (MPA) - 9E.5
TEMP. (KELVIN) 33 TEMP ( VIN) - 1033

STRAIN (POT.) TIME (HOUrS) THICKNESS (CM) - .013 THICKNESS (CM) - .313I PT (SOURCE - AF FLTCP6-11 SOURCE - AF LTCR6-11F

.018 .3

.019 .8 STPAIN (PCT.) TIME (hOUoS) STRAIN (PCT.) TIME (FOUPS)

mi .038 1.5
b.34 2.5

111 18.5 .013 .3 .021 .4
.181 414.1 .024 .7 .031 .7
• 1 . 39 2
.218 67.6 .238 1.2 .039 1.2 >
.255 91.9 .050 2.2 .054 1.7 3
.285 12. .057 3. .053 2.3
.322 112,8 .181 20.1 .063 3.4
.337 162.8 .261 43.C .214 19.1

.361 180.9 .334 67.5 .355 64.

.398 212.9 .407 91.3 .491 67.

.423 239.1 '

.443 259.2

.478 283.4
.0 92 327..



mO
SALLCY - L:5 ALLCY - LE> ALLCY - LF:5 n 0STRESS (MPA) - 12.7 STESS (MPA) - 224.1 STRESS (MPA) - r6

S TEMP. (KELVIN) TMP. (KE LVIN) - i 37 TEMP. (KELVIN) - 1 .33 r 0THICKNSS (CM) .1 THICKNESS (CM) - 3 THICKNESS (CM) - 1SOURCE - AFVLTCP6-1i SOURCE - AFFLTER6-11, SOURCE - AFrLTCP6-11 0

SSTRAIN (PCT.) TIE (OCUPS) STRAIN (PCT.) TIME (HOUS) STRAIN (PCT.) TIME (FOUPS) -
> m

.034 .2 .107 .Z .0o18
0 55 .5 .164 .E .035 .4.097 1. .25n .7 . ,..
.137 iq .461. .112 3..E5 2.5 .134 3.2S.193 3.2

3c
ALLOY -L65 ALLOY - LA5 ALLOY - L605

STRESS (MPA) - 144. STRESS (MPA) - 7. STRESS (MPA) - 86.2TEMP. (KELVIN) - 1033 TEMP. (KELVIN) - 133 TEMP. (KELVIN) - 123 ,THICKNESS (CM) - .351 THICKNESS (CM) - .12 THICKNESS (CM) - .102
SOURCE - AFMLTCP6-116 SOURCE - AF LTTCP 6-11 SOURCE - .FrLTCR6- i r

STPAIN (PCT.) TI ME (PCUPS) STRAIN (PCT.) TIME (FCUPS) STRAIN (PCT.) TIME (HOURS)0

.021 .3 .001 . .015 .40 4.ct .6 .061 4.,.064 1.1 .020 1.4 .131 22.2
&1•97 2.2 .026 2.3 .183 45.1.114 2.7 .534 3.4 .288 69.4.137 3.5 .074 21.3 .361 94.9
.156 4.2 .113 47.- .391 117.9
.176 4.9 .138 9.3 .437 141.8

*165 92.9
.183 12 .4
.197 143.4
.213 1 F6.3
.217 190.3
.230 215.3 Z
.241 237.2 >
.259 263.2
.264 2P5.4
*271 311.3
.280 334.4

. 357.?2
.298 1.
.307 45.



mO

ALLY - LE U ALLCY - LF 0 ALLCY - L>
STRESS (MPA) - i.' STRSESS (MPA) P- STESS (PA) - 1L.

TEMP. (KELVIN) - 1 33 TEMP. (KELVIN) - 3 TEMP. (KELVIN) - .33 0
THICKNESS (CM) - .12 THICKNESS (CM) - 102 THICKNESS (CM) - ?.12 ( Z

SOURCE - AFMLTCR~-11S SCOU;R - F LTCi0-11 E SOURCE - FVLTCR--11 ' 0

SSTRAIN (PCT.) TIME (FOUPS) STRAIN (PCT.) TIME (HOUQS) STRAIN (PCT.) TIME (FCU-S) ym
2 m
m

. 80 .4 .008 .3 .016 . -P.015 ..c .019 . 030 1.1

.030 2.3 .021 1.1 .041 2.3
S.035 3.2 .025 1.6 .054 3.1

O .116 19.6 .033 2.3 .061 4.2
.208 43.5 .044 3.2 *154 21.1
.288 67.8 .107 19.3 .271 47.1
,412 93.3 .180 44,,.8 .360 69.7 C,
.497 11i.C .242 67.9 ,E6 92.9 c

.299 92.5

.345 12-.8

.439 163.5

.483 187.E rn
-u
-I

ALLOY - L605 ALLOY - L605
STRESS (MPA) - 16F.5 STRESS (MPA) - 68.9

TEMP. (KELVIN) - . ?3 TEMP. (KELVIN) - 1233
THICKNESS (CM) - .132 THICKNESS (CM) - .203

SOURCE - AFVLTCR6-116 SOURCE - AFPLTEP6-116

STRAIN (PCT .) TIME (FOUYS) STRAIN (PCT.) TIME (FOURS)

S.C38 . .012 .4
.052 1.1 .015 1.3

4 .077 2.C .321 2.1
.092 3.Z .064 20.6
.134 3 .8 .094 4r.7 z
.122 4.P .118 7;.1>
.135 E. .136 91.9
.461 22.4 .147 117.I

.157 140. -

.162 163.



ALLY - LJ, ALLY - L 3C ALLOY - L05 mSTRESS (MPA) - 8.2 STRESS (MPA) - 137. STRESS (MPA) - 189d.; -TEMP. (KELVIN) - 1, 3 TEMP. (KELVIN) - 1733 TEMP. (KELVIN) - 1:33 r 0THICKNESS (CM) - .23 THICKNESS (CM) - .203 THICKNESS (CM) - 203 C ZSOURCE - AFMLTORG-11E SOURCE - AFFLTCOR-116 SOURCE AFMLTCP6-e r-- 0

O STRAIN (PCT.) TIME (FCUDS) STRAIN (PCT.) TIME (FOUPS) STRAIN (PCT.) TIME (HCU.S) " m> m

• * 1 .1 .006 .4 .029 .r
.•005 .3 .014 .0 .049 .E.006 1.2 .026 1.7 .061 1.0S.012 1.9 .037 .085 1.6S.315 .' . 43 3.2 .108 2.3E .017 3.1 .162 2. .135 3. 1
O .054 21.4 .229 27. .178 4.1S.086 45.2 .370 43. .249 5.6 .123 H .7

.145 91.9 c

.163 116.7

.174 141.4
I- * .183 164.8 o

o .200 189.2 C "
.237 213.3 rn.218 235.8
.229 26.9 ALLOY - L6%5 ALLOY - LE65 0.235 285.7 STRESS (MPA) - 27.6 STRESS (MPA) - 27.6 .251 210.1 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144.264 332.9 THICKNESS (CM) - .013 THICKNESS (CM) - .013.275 51.9 SOURCE - AFLTCR6-1 SOURCE - AFFLTr96-11F.2985 481.1

333 4.4 STRAIN (PCT.) TIME (-OURS) STRAIN (PCT.) TIME (FOURS)" .318 452.7
.328 477.8
.337 F00.6 12 017 3.348 E24.7 .A17 .7 .021 .8.360 548.9 .318 1.2 .041 2.1.371 572.7 .025 1.5 .041 3.5.380 595.9 .022 2.2 .049 4.5
S*397 23.3 .028 3.2 .054 5.,.402 E45.2 .066 19.1 .108 21.9*419 668.5 .118 45.6 .142 48.7 Z.425 692.7 .154 7L.4 .186 71.7 >
.435 717. .190 93.1 .226 94.3.451 74..7 .229 115. 7 .257 117.9*462 761.1 .257 140.3 .282 143.0 I.465 789.1 .286 !65.2 .303 166..485 813.4 .296 187.8
.498 838.1 .315 213.4



me

ALLCY - LE :T ALLCY - L6 5 ALLOY - L
STPRSS (MPA) - 62.1 STRESS (MPA) - 63.9 STRESS (MPA) - 22.8 >

TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 TEMP, (KELVIN) - 1144 r -
THICK ESS (CM) - .113 THICKNESS (CM) - . 13 THICKNESS (CM) -12 r

SOURCE - AFLTE96-11E SOURCE - AFMLTP6-11F SOURCF - AFPLTCR5-1160 Z
HO

STRAIN (PCT) TIME (FOUP~) STRAIN (PCT,) TIME (F-UPS) STRAIN (PCT.) TIME (OUPS) 60
S I O(T TM U ) (

: zm.. 2 2;.4 m "D
.053 2 347 .2 .2 224 m

. .154 1.1 *072 .4 .031 45. -
S221 2. ,120 1.5 .037 74.5

.276 151 .3 .046 96.
S .351 5,5 .187 3.5 .354 117.6

O °222 4,8 .074 4:.
.497 2 .7 .08 1E,.

) .096 i 1.r
I110 213.P C1

.121 237. c

.127 261. -

ALLOY - LC5 .133 287. >.
STRESS (MPA) - 41.4 .139 329 4

TEMP. (KELVIN) - 1144 .145 3

0 o SOURCE - AFVLTCR6-11E ALLCY - L65 .159 381.7 m
STRESS (MPA) - 41,3 .156 408.7

TEMP. (KELVIN) - 1144 .165 432.5
STRAIN (PCT.) TIME (FOURS) THICKNESS (CM) - .102 .160 53.6

SOURCE - AFLTR6-116

.002 .1 ALLOY - LE.T

.012 3 STRAIN (PCT.) TIME (IOUoS) STRESS (MPA) - 55.2
01328 1.2 TEMP. (KELVIN) - 1144

.036 2. THICKNESS (CM) - .102

.040 2.8e ,11 .2 SOURCE - AFLTCR6-116

.046 4.0 .020 .7
.052 407 .032 202
080 21.E .035 3.2 STRAIN (PCT.) TIME (FOURS)
.123 46.0 .098 2 o.
.162 69.4 .107 27.6
.221 93,E .139 43.4 .032 .4
.259 117.9 *190 68. .051 .8
.314 1413 .212 75.2 .082 1.9
.349 1 4.9 .250 91.7 .107 3.2 2
,38C 190 5 .306 115. .116 4.3
.412 213 5 .355 139,8 ,134 5.6
,444 271 163.8 . 240 21,5
.459 261.4 .435 188°C .331 46.0 -
45987 2851 0464 212. .363 53.1 -
0493 30 ,7 .492 236.1 .412 69,7 -.



ALLOY - L5 ALLCY - LEJ0 ALLCY - L 5
STRESS (MPA) -STESS (MPA) - S. STRESS (MPA) - 7.

TEMP. (KELVIN) - -44 4 TEMP. (KELVIN) - 4 TE (ELVIN) -
THICKNESS (CM) - .102 THICKNESS (CM) .1THICKNESS (CM) - 203

SOURCE - AF!LT[RR-11;b SOURCE - AFMLTCR6-116 SOURCE - AFVLTCR-ll- m

STRAIN (PCT.) TIME (COUPS) STRAIN (PCT.) TIME (FIOUiS) STPAIN (PCT.) TIME ( CUS) )

oz
.027 .4 .031 .4 .005 .3 -1 0.049 1.0 .057 .1 .08 .E
* 78 2.1 1080 1.9 .011 i.2
*1G2 3. .098 2.6 .013 2. 0
*107 *.5,.117 3.6 .313 2.9 2 m.319 21.1 .328 22.1 .013 3.4 M -v
.370 •.7. .487 44. .036 20.-9 r-

.036 27.8 " z2
L .047 44.1

STRESS (MPA) - 1,.3 n 91.4
TEMP. (KELVIN) - 1255 .11i 107.2
THICKNESS (CM) - .513 .131 140.C

ALLOY - L 05 SOURCE - AFtLT'6-116 .157 1EF .1STRESS (MPA) - 123.7 170 189. c-
TEMP. (KELVIN) - 1144181 215.3
THICKNESS (CM) - .1L2 STRAIN (PCT.) TIME (FOURS) .193 237.•

SOURCE - AFrLTCP-116 .202 263.2
3 P .201 287.6
0 .006 .2 .218 3 O.0STRAIN (PCT.) TI M E (FOUDS) .007 8 .22CG 33.6 m

.036 1.4 .227 359. "1 .015 2.3 .231 3 8,
.102 •. .016 3.4 .237 4 4.6,212 .4 .016 4. .241 427. 1.396 .8 .021 5.7 .246 453.9

.028 2. .243 478.7
*044 47. .241 178.8
* 057 7?.7 .243 526.4

ALLY L.073 94. .243 551.
STRESS (MPA) - 17.2 .114 11. .24 573.

TEMP. (KELVIN) - 1255 .1 144.1 .256 9
THICKNESS (CM) - .•13 .263 521.2

S.263 43.8SOURCE - AFtLTCPr--116 ALLCY - L 05 .261 71 1
STRESS (MPA) - 24.1 .266 692.9

TEMP, (KELVIN) - I 5 .267 71, eSTPAIN (PCT.) TIME (FOURS) THICKNESS (CM) - 13 267 742.

SOURCE - AFMLTCR-11 .279 7679
S12 .271 7L. 5  Z

. 13 1.7 STRAIN (PCT.) TIME (FCU0S) 291 7

.124 17.5 .2 8 .

.252 42.4 04 .7.?9.486 C-7. P, J'40 .7 Ze8 qi 8
.4 7. .047 1.E .335 Q3 4

*06' 1. .33 R C6..062 2 .301 9! 8.
.273 19. .314 11 .



ALLOY - L r5 ALLOY - L EP ALLOY - LE7
STRESS (MPA) - 34.5 STRESS (MPA) - 1E STPESS (MPA) - 31. _

TFM~. (KELVIN) -TEMP. (KELVIN) 55T (KELVIN) - m a;
THICKNESS (CM) - 13 THICKNESS (CM) - . THICKNESS (CM) - .m

SOURCI - AFLTt 6-11 SOU CE - AF LTDR~-115 OUNCE - aFtLTC 6-11r

rO

STRAIN (PCT.) TIME (FOUPS) STRAIN (PCT.) TIE (CU%'S) STRAIN (PCT.) TIME (FOURS) . z

. 54, .2 .014 . 29 .3
0 .076 .4 .015 1.0 .105 1.7

.135 .7 .025 2.0 .127 2.3 z m

.162 1.6 .032 3.1 .164 3.3 m-
255 3.2 *C36 3.5 -

.297 4;2 -. 112 19. 4

.350 5.3 .126 23.
.141 27.4 ALLOY - Lf5
.179 43,E STRESS (MPA) -65.5
.189 51.6 TEMP. (KELVIN) - 1255

ALLOY - L605 2?06 67.5 THICKNESS (CM) - .51
STRESS (MPA) - 91.7 .232 75.2 SOUC 1

TEMP. (KELVIN) - 1255 .230 95.5
THICKNESS (CM) - .051 .258 118.6

SOURCE - AFrLTCR6-116 .282 139.8 STPAIN (PCT.) TIME (OURS)
.295 147.47 .317 165.3

STRAIN (PCT.) TIME (HOURS) .323 171.5 2194
0 .335 187.5 .432 .4 _

.340 195.2 3
.079 .2 .367 211.8 0
.130 .4 .375 219.2
.170 .8 .392 235.7
.233 1.4 .410 242., ALLCY- LEC5
.274 i.5 .484 298.7 STRESS (MPA) - 24.1

TEMP. (KELVIN) - 1250
o THICKNESS (CM) - .102

ALLOY - LEi5 ALLCY - LE05 SOURCE - AMLTC9-11F
U STRESS (MPA) - 6.9 STRESS (MPA) - 25.9

TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255
THICKNESS (CM) .102 THICKNESS (CM) - .102 STRAIN (PCT.) TIME (FOIorS)

, SOURCE - AFMLTCR6-11F. SOURCE - AFFLTC6-11 r-

.020 ,4
A STRAIN (PCT.) TIME (OCURS) STRAIN (PCT.) TIME (FOURS) •35 1.

.006 .6 .006 2 .060 33

.013 1.9 .024 .7 .05q 3.9

.016 2.9 . 25 1.2 .070 4.9 I

.021 3.9 *327 2. .188 2 4 -

.029 2.6 .046 3.1 .267 45.2

.L31 28.1 .145 19.4 .332 71.

.036 45.7 .264 44 4 .372 93.4

.044 .380 9.9 .413 119.5

.046 431. .457 142.4

.c0 117. C .457 117. 2



ALLSTESS OY (P - 5 ALLOY - Lf05 ALLCY - L 5STESS (PKELVIN) - STRESS (MPA) - 4 3 STRESS (MPA) - 17.8TEMP, (KELVIN) - TEMP. (KELVIN) - 125 TEMP. (KELVIN) - 125THICKNESS (CM) - .102 THICKNESS (CM) - 1 THICKNESS (CM) - 23SOURCE - AFFLTCRE-11 - SOURCE FMLTCP-11i SOURCE - AFILTP-11s

STRAIN (PCT.) TI ME (ICUPS) STRAIN (PCT.) TIME (FCUPS) STRAIN (PCT.) TE' (IOUDS) 0 z
0 POU

-n0S.09 1.7 .039 .2 .010 .4 096 1.7 116 .C .334 1.3139 .1 .146 1.4 .044 2.5 Z m.139 3.1 .186 2.C .067 26.7 m rn11.428 20.4 E2 26, r-_
.084 43.6

< .08i 65.7:.089 91.5
.397 116.7

AT .100 140,4ALSTESS LC - L5 ALLOY - LE5 .10 163.8STRESS (PLV) - 6 STRESS (PA) - 17.2 .167 189.8 GTEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255 .Ia5 E11.8S THICKNESS (CM) - 102 THICKNESS (CM) - .203 .109 237.7a SOU;.CE- AFVLTCRS-116 SOURCE - AFVLTGP6-116 .115 2E2.2
.119 284.?.113 307.8STPAIN (PCT.) TIME (PCUCS) STRAIN (PCT.) TIME (HOURS) .123 357.1 m
*131 38', r.131 l 1.5 "0C .136 .1 .131 1-u -.2143 .003 .2 .132 428.1 C.344 . .005 .5 .124 453.0.34 16 1.5 .125 4 76. --.500 .8 .019 .1 .121 500.7.022 3.2 .129 525.2.063 20.3 .135 547.9.077 25.8 .139 57).7ALL.11 45.7 .142 596.7ALLOY -LE .122 51. .144 2.STRESS (MPA) - 34.5 .129 68.4 .133 645.5TEMP. (KELVIN) - ?5 .142 91,3 .144 668,7THICKNESS (CM) - .03 ,152 115.E .145 692.

SOURCE - AFMLTP6-116 •159 141.1 .149 716.2
.166 164.1 .155 742.4- .172 ie'. 4 .lE0 7E5.1STRAIN (PCT,) TIME (FOURS) .180 212.7 .169 789,2.195 736. .174 817.1.186 259.E .185 83517 z022 3 .192 285.5 .192 60.8.059 1.0 95 H,. .190 883.906 1. .19 .191 1.9

.105 2.E .206 356.4 ,189 931.,4.127 3.5 .211 379.7 .193 957.-332 . .212 404.8 . 211 98.2
.203 11:3.9



ALLOY - LE5 ALLCY - LE3 ALLGV - L5 >
STRESS (MPA) - 55.2 STRESS (MPA) - 6.9 STRESS (MPA) - 7ci8

TEMP. (KELVIN) - 12 5 TEMP. (KELVIN) - lZrTEMP. (KELVIN) - 12E 5
THICKNESS (CM) - .23 THICKNESS (CM)- 03 THICKNESS (CM) - .33 Z

SOURCE - AFLTCP6- 116 SOURC - AFLTCR6-16T SOURCE - AFrLTCR6-11E 0

O STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (FIOUS) z m

.lb6 .4 .177 .2 .277 1

S.164 .8 .292 *4
.211 1.1 .393 .

S.260 1. 4o .347 2.G
C .476 3.2
Q co

aa

0z

bh



PREDICTION OF CREEP IN PHASE I NAS-1-11774
'METALLIC TPS PANELS SUMMARY REPORT

APPENDIX C-2

L605 SUPPLEMENTAL STEADY-STATE CREEP TESTS (RAW DATA)

This portion of Appendix C presents the results of the supplemental steady-
state creep tests. All strains shown are total plastic strains. For informational
purposes the elastic strains are presented below for the individual tests in order
of their appearance in this section. Elastic strain "A" was measured at the start
of the test while elastic strain "B" was measured at the conclusion of the test.

SPECIMEN # ELASTIC STRAIN, %

A B

LOlL .035 .028
LO2L .032 .023
LO3L .022 .014
LllT .037 .024
L17T .045 .024
L18T .031 .032
L23L .037 .062
L24L .011
L27L .036 .033
L29L .015
L31L .070 .070
L39L ---- .066
L42L .070 .085
L45L ---- .028
L48L .015 .013
L50L .051 .070
L54L .029
L58L .042 .04i
L73L .016 .022
L78L .022 .037
L93L .021
L95L .032 .031
L96L .030 .048

C-2-1

MCDONNELL DOUGLAS ASTONAUCS COMPANY . EAST



ALLOY - Lj ALLOY - L ALLOY - L o
STRESS (MPA) - 55.2 STRESS (MPA) - 55.2 STRESS (MPA) - 11 i r

TEMP. (KELVIN) - q7 TEMP. (KELVIN) - 979 TEMPo (KELVIN) - r- 0
THICKNESS (CM) - 25 THICKNESS (CM) - 25 THICKNESS (CM) - .25

SPECIMEN NO. - M9AC-E-L',OL SPECIMEN NO. - MDAC-E-LP6L SPECIMEN NO. - M3AC-E-L1 L 4 0a -n

SS.TRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (HOURS) .o m
Zm

.029 .1 ,5 .1 .011 *1 r
P04b .2 .009 .2 17 .2 Z
.049 3 .011 .3 u18 .3
.046 .5 .C17 .5 .029 .5
S.050 .8 .019 .8 .035 .8
.0S 6  1.0 .019 1.[ *30 3
.058 1.5 .322 1.5 .343 1.
.69 2. 025 2 048 2.
.069 3.0 .031 3.u *a51 3.7
.069 4. .036 4, ,053 4.6
.273 5 .040 5.0 .057 5.
.084 iC .046 1i.0 .364 6.5
.078 19. .051 2•. .069 17.*

0 .06 25. .065 25.0 .072 23.
.130 3.0 .055 30.86 25 m
.384 35. .073 35.0 .132 41. G

C .10, 43,C .080 43.0 *279 113.0
.19g 46.L .082 45. .282 115. G

S .116 50, .,82 Si. .291 120.U
W.134 55. U .93 o5[ .302 125.

.149 6u. 3 *318 130.
S.122 67.3 .331 142.
.132 7: .350 145.

.124 7.. .35 15.5

.159 84. .363 6 .
1 5 84. . 373 .

.137 :L3.0 . 382 17.

.149 122. .400
166 163 43

.174 .65. 428 195. 3

.17f, 17 .* .441 2 .

.181 17 . .9..

.193 18 .

.196 187. Z
S .187 >3

.192 195.

.203 3'3 .

b,4
"4



ALLOY - L 5 ALLOY - LG05 ALLOY - LSG5STRESS (MPA) - 11.3 STRESS (MPA) - 27.6 STRESS (MPA) - 55 .•TEMP. (KELVIN) - 7 TEMP. (KELVIN) - 1553 TEMP. (KELVIN) - 1 r-THICKNESS (CM) - .325 THICKNESS (CM) - .025 THICKNESS (CM) - j 2 o ZSPECIMEN NO. - MOAC-E-L42L SPECIMEN rNO. - MDAC-E-L73L SPECIMEN NO. - M)AC-E-L23L 0

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT,) TIME (FOURS) STRAIN (PCT.) TIME (HOURS)'

.008 .1 .019 .1 .018 .1 m014 .2 .030 .2 .020 2 2

.016 .3 .029 .3 .014 .3S.015 .5 .27 .5 .026 .
013 . .029 .8 .031 .8.023 1.5 .029 1. .041 1

.P 024 . C .328 1.5 .049 1,5S030 3. .037 2.0 .034 2.0.040 3.0 .040 3.C.,52 5. .042 4.0 .046 4..080 1u.L .04 5.0 .057 . L
S .087 19. 0 .041 IOC. 063 1.09 20. .46 15 .038 2 3..115 25. .059 22. .047 25.0 o

.123 3. .058 25. .056 3 L*135 35. .063 3.j0 .074 34.0 - -
168 43.0 .076 35.0 .107 42,. C.155 45. .080 39.; .113 45. 0
.165 5J.0 .072 46.0 .113 50. l

( .191 55.2 .070 5J.0 .117 55.0.197 59. .076 53.0 .142 58.c.198 67.- .078 65.0 .135 66..212 70. .081 63. .142 69.
00 .225 75.0 .086 7,.C .164 74.S226 80.3 .076 76.0 .177 79.0.241 83.0 .078 80.2 .183 82..2 46 9.O .082 85. .198 910S*259 95.0 .083 87.0 .212 95.*271 100.0 *09 142.0 .187 10
b .279 135.0 .091 145. 0 .191 10 ,c .286 107.0 .1if 150. .231 162.0.371 162. .116 155.3 .229 165..385 165.* .121 159.0 .238 17.;*394 170.1 .115 16 .241 175,

.408 175.0 .089 17 .0 .264 17, ..413 178.0 .105 175. .250 I161n

.423 18 .G .13 8 . 250 190.0.435 19, .Z104 183.0 .259 195.*445 195.9 .090 190. .272 ?0t.C

.449 27. C .093 194.0

.453 232.

.465 20 9 .



2 mm 0

ALLOY - Lr0S ALLOY - L ALLOY - Lb60
STRE.S (MPA) 55.2 STRESS (MPA) STRESS (MP) 2 019 .2

TEMP. (KELVIN) - 13 TEMP. (KELVIN) - 153 TEMP. (KELVIN) - 3 .3
THIC .020NESS (CM) .5 HICKNESS (CM) - 25 THICNESS (CM) 3

T K .039 1.5 *013 1o6 • 42 1•5
.049 2.1 .01 2. .049 2..012 3 .017 3 0 .055 3.

.0820 .0 .022 4.0 057 4.

.151 2. C .6009 21.8 .039 20.8
:939 1.15 031- .C .'42 1.5

S.16649 2. .076 2. .049 25.
.170 3 .1 077 3 0 .6 3.0
.187 4. .085 35. .064 4. G

.242 89. .33099 5. .0 76 3.

1527 95 . .02 5, .079 5J 2.
.9 1055. .081 55.

5287 105. * ....S.252 113.0 .152 17.0 .089 67.0

2166 211. .0156 2:5..~ .425. 7rn
S273 3 .160 125. . 94 35,

S.28 12534. .85 13. .0499 8.
S29 129. 99 45 17. .116 84

279 13. 11 55 11.0 .081 55.0

.284 1435.0 164 145. 0 .096 95.0

.252 1135.0 .12 1517. .039 67,
o.6 ' 115. .156 121.1 .0 84 7 "1

2 98 122. .1690 125. L1 .94 75.0

b .382 1625.9 184 165. C .110 18.o0
* 298 12965.0 .184 1330 .16 4,02833 169.0 .186 145. .0968 16.95

410 185. 18672 150. .105 187.0

3293 195. .193 1955.0 . 114 19.0

.1 1..197 195.0 .106 195.0 I
.9 P . .12 2009-0



ALLOY - Lr 0
STRESS (IPA) - 11 3 ALLOY - L605 ALLOY - L

TEMP.) - STRESS (MPA) - 13.8 STRESS (MPA) - 27TEHP. (KELVIN) - 5 TEMP. (KELVIN) -1144 TEMP. (KELVIN) - 14
SPEHICNE () 25 THICKNESS (CM) - .025 THICKNESS (CM) -. 32 r

SPEMEN - -- LL SPECIMEN NO. - MDAC-E- L24L SPECIMEN 1O. - M-AC-E-L79L
0O

STPAIN (PCT.) TTIM (HOUS) STRAIN (PCT,) TIME (HOURS) STPAIN (PCT.) TPIE (FOUPS) C

M.s006 0 2 m
S031r 006 . *02 .* m
S36 .006 .2 .029 .2

.66 .006 3 ,8 .3
S.78 .009 5 02

S.01 11 1 .026 .
c 125 *Olt 1.0 *028 1.0

.125 i.E ..011 1.5
a .162 2. C .011 .41 2.

lb . 011 3. .69 3. ,
.2 ., 014 4.0 834. C

..459 017 5.0 .088 5.
72 024 10.0 .02.74. 21.2 .030 15.0 .072 18.

S84 25030 16.5 .075 2.
.54 25. .040 24.0 .062 25. o26. .050 25.0 .133 3L. m

S.049 30.0 *046 35.0 -
.047 35.0 .087 9.0 C
.049 40.0 .057 95.0
.057 45.0 .095
.091 100.0 .136 .:
.070 105.0 131 115.
.076 110.0 1.21 .12E
.059 119.0 .097 125.
.049 120.0 .092 1J.L
.068 125.0 .102 138.
.070 130.0 .124 1t4'.
.062 135.0 *114 14 5.

: , .1i6 '55.:'
.063 150.0 .125 162
.061 155.0 .120 167.L
.065 167.0 .1L2 17'.
.063 170.0 .89 1 75.:
.064 175.0 .111 179.
.065 191.0 .114 186.
.063 195.0 .13 C.
.066 196.0 .131 194.
.062 197.0 1il1 . l
.054 198.0



m

ALLY - L ALLOY L, ALLO L0 >
ALLOY - L605 STRESS (MPA) - 27.6 STRESS (MPA) - 27. r

STRESS (MPA) - 27.6 TEMP. (KELVIN) 1144 TE4P. (KELVIN) - 1144 -O
TEMP. (KELVIN) - 1144 THICKNESS (CM) - .25 THICKNESS (CM) - .,63 (

,THICKNESS (CM) - .025 SPECIMEN NO. - lMAC-E-LI1T SPECIMEN NO. - M1 AC-E-L 3L -
SPECIMEN NO. - MDACE- L93L -n

S STRAIN (PCT.) TIME (I)OUrS) STRAIN (PCT.) TIME (FOUPS) '
STRAIN (PCT.) TIME (HOURS) >n

.002 11 .o Z

.007 .2 .14. .013 .3
0 007 3 019 .5 .011 .5

0007 5 .021 .8 .011 .8
.010 .8 .019 .l .017 1•
S.014 1.0 .2 .015 1.
.014 1.5 ? 2.S.01U 3 .: .016 2.^
.016 2.0 .031 3.,.021 3.
* 016 3.0 .028 4.6 .044 4.
.024 4.0 .035 .. 89
060 10.0 .039 .64.060 10.0 .041 15. .054 12..

S.076 14.0 .C43 23.1 .048 19.,o .1 22.0 .043 •3.C .048 1•.rr
S.089 22.0 .043 25. .036 2. m

*089 25.0 .044 30.0 .038 25. 1
.080 30.0 .057 35.0 .04 1 3. C
.082 35.0 .068 39. .046 35.

S090 .0 .74 94. .049 54.i
091 0.0 .077 . .05 73.0:096 S .379 1 . ,7ys 115..

.10 5*0 .081 119.0 .C8C 120..
O .106 60.0 .083 12-. .089 125.

.109 62.0 .G82 13. . 87 130.k .112 69. .92 1 .375 139.
*112 74A .087 143. .375 145.C

.188 145 . .69 150.

.091 15. G .385 163.-

.115 155. .87 165.

.128 153 9. .095 170
.12, 167., .102 17F.
.117 i7 . .101 179.
.I : '79 .C98 187. C
.096 18.I .103 193.. 2
.137 1. .104 195.

.120 191. .106 2 . I
.121 19,.
.122 2 ,

',,,



mm 0
ALLOY - L605 ALLOY - ALLOY - L605 ->

STRESS (MPA) - 55.2 STRESS (MPA) - 5-.2 STRESS (MPA) - 55.2 r
TEMP. (KELVIN) - 114 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144
THICKNESS (CM) - .05 THICKNESS (CM) - .,25 THICKNESS (CM) - .025

ECIMEN NO. - MDAC-E- L27L SPECIMEN NO - MDAC-E- L58L

0 STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (-OUPS) STRAIN (PCT.) TIME (HOURS) > m
Z m

S*.035 .2 . .1 .021 .1 z.020 .3 G14 .034 .2
0 .042 .5 02 .041 .3
o0 070 .8 04 .5 045 .5

S *060 1.0 .056 .053 .8
78 1.5 .061 1.0

.103 2.0 .0 72 1.5
14 3 .092 2.0.158 4 .1, o103 3.

.171 5.0 .126 4.
S.246 10.0 *e .126 .0e26 3 .239 u 128 5.0:141 1908 .131 10.0

2 4 .208 15.0
- .374 25.0 .413 .269 23.0.419 30.0 .467 .269 25.0 m

S457 35. .487 35. 0 .304 30.0 0
• .502 42. .577 43.[ •328. 35.0
.509 45.0 .597 .5 9355 40.0
.551 50.0 .27 5 421 470
.581 55.0 .2 428 50
*617 660 .428 50.0.'95 6 .445 55.0.458 60.0

.462 64.0
b .502 71.0

~-A

,I+•l -. ++ ,p..A

• -I



mO

ALLOY - L ALLOY - L"E ALLOY - L

STRESS (MPA) - 2 STRESS (MPA) - .? STRESS (MPA) - 13-

TEP. (KELVIN) i44 TEMP. (KELVIN) 144 TEMP. ((ELVIN) - 15
THICKNESS (CM) . THICKNESS (CM) - .063 THICKNESS (CM) -. 25 Z

SPECIMEI NO. - MC-E-Li7T SPECIMEN NO. - MAC-E-L IL SPECIMEN .NO - MiAC-E-L?2L - 0

0SP1P
STPAIN (PCT.) TIIE (F-OU'S) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (fOUS)> m

Z m-

M1 .35 .1 .03 .1 w
.019 a 017 .2 .006 .2

.025 3 .28 .3 .7 .3

b .33 . *,04 * .0 2
Z 36 . ,.28 .8 .324 .8

S 1. .030 1. .326
.062 .0330 .047 *.' .042 i°5 .03

b.2 .354 .(.040 2.0
.077 .7 . . .046 .
10; 40 L+. .a054 4 .
.133 .i5 o362 " 3-

.22 U .159 Oo .060 9.
.27C 13. .189 140 .0362 16. n
.363 21.0 .233 21.c .064 20. C'
.41i 25 . .253 2 .069 25. L _

.453 3 .6 .278 3;0. .071 3.

e .482 35. .294 5 0
.591 45. .314 38.0 .U65 41.
629 5. .327 45.0 .078 45.c
-53b 51. .351 5 . .084 50.0

.358 55., .077 55.c

0 .360 6j.2
.379 62.
.408 69.0

z
CA



m

ALLOY - L605 ALLOY - L5 -5O
STRESS (MPA) - 13.8 STRESS (MPA) - 27.6 r

TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255
THICKNESS (CM) - .325 THICKNESS (CM) - 25

SPECIMEN NO. - MOAC-E-L41L SPECIMEN NO. - MD5C-E-L34L O
W 0

o STRAIN (PCT.) TIME (POU S) STRAIN (PCT.) TIME (HOUPS) M
> Zm
2 m

0 01 .1 .04 01 r -
a1oi .2 .014 .2
.005 .3 .019 .3
.007 .5 .032 .5
S.008 .8 .037 .8
*010 . .042 1.0
.012 1.5 .045 1.5
.018 2.0 .043 2.0

S.022 3.0 .050 3.0 c
.026 4.0 .054 4.0
.344 5.$ 060
.048 .071 C
.053 18.0 .135 15.0

0 .055 20.0 .180 23.0 m.060 25.0 .180 250G
.087 30.0 .192 29.0
.094 34. .209 35. C.077 42.0 .228 39.

.075 45. .259 48.

.074 50.0 .265 5J00

.072 55.0
S084 58.0
* 132 67,*
.097 7L.
.ida; 75.0
.106 80.0
S.108 83.0

, .116 91.0

.119 105,

.118 163. 0

.129 165.0
.134 17.C Z
.137 175. 4
.137 179. L
.135 187.'
.135 190.0
.138 195.L
.138 2 ".



PREDICTION OF CREEP IN PHASE I - NAS-1-111774
METALLIC TPS PANELS SUMMARY REPORT

APPENDIX C-3

L605 CYCLIC CREEP TESTS

(RAW DATA)

This section presents the results of the 15 cyclic creep tests that were

performed on L605 tensile specimens.

C-3-1
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PREDICTION OF CREEP IN PHASE I NAS-1-11774

SMETALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 1
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 978*K
Test Direction Longitudinal
Sheet Thickness (cm.) 0.025 cm. + 0.003
Specimen Number L44L L57L L57L
Specimen Thickness (cm.) .0251 .0254 .0254

Specimen Width (cm.) 1.2769 1.2776 1.2748

Applied Load (kg) 42.3 16.9 26.8

Test Stress (MPa) 128.9 51.0 80.7

Side A

Side B

Cycle % Creep
Number L44L L52L L57L

1 Side A .00 .00 .01
Side B .01 .00 .01
Ave. .005 .00 .01

5 Side A .01 .006 .01
Side B .03 .006 .01
Ave. .02 .006 .01

15 Side A .05 .017 .03
Side B .04 .017 .03
Ave. .045 .017 .03

25 Side A .07 .017 .05
Side B .07 .029 .05
Ave. .07 .024 .05

50 Side A .11 .034 .06
Side B .11 .029 .05
Ave. .11 .032 .055

75 Side A .14 .011 .07
Side B .17 .046 .09
Ave. .155 .046 .08

100 Side A .17 .029 .09
Side B .20 .051 .10
Ave. .185 .051 .095

C-3-2
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'tZPIEDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 2
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 10530K
Test Direction Longitudinal
Sheet Thickness (cm.) 0.025 cm. + 0.003
Specimen Number L36L L76L L101L
Specimen Thickness (cm.) .0267 .0269 .0267
Specimen Width (cm.) 1..2769 1.2786 1.2764
Applied Load (kg) 44.3 18.3 29.0
Test Stress (MPa) 127.6 52.2 83.4

Side A

O O
Side B --

Cycle % Creep
Number L36L L76L L101L
1 Side A .07 .02 .05

Side B .09 .01 .03
Ave. .08 .015 .04

5 Side A .21 .05 .10
Side B .22 .04 .11
Ave. .215 .045 .105

15 Side A .43 .08 .15
Side B .43 .07 .20
Ave. .43 .075 .175

25 Side A .69 .09 .22
Side B .67 .09 .26
Ave. .68 .09 .24

50 Side A 1.13 .11 .32
Side B 1.13 .11 .34
Ave. 1. 13 .11 .33

75 Side A 1.54 .13 .42
Side B 1.53 .13 .39
Ave. 1. 535 .13 .405

100 Side A 1.91 .14 .47
Side B 1.87 .15 .47
Ave. 1. 89 .145 .47

C-3-3
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 3
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L53L L61L L37L
Specimen Thickness (cm) 0.025 0.025 0.025
Specimen Width (cm) 1.278 1.278 1.278
Applied Load (kg) 9.7 15.5 24.1
Test Stress (MPa) 29.6 47.2 73.5

Side A

SSide B L

Cycle % Creep
Number L53L L61L L37L

1 Side A .070 .090 .190
Side B .030 .100 .210
Ave. .050 .095 .200

5 Side A .110 .170 .480
Side B .060 .160 .500
Ave. .085 .165 .490

15 Side A .130 .190 .710
Side B .080 .220 .790
Ave. .105 .205 .750

25 Side A .140 .220 .980
Side B .100 .250 1.000
Ave. .120 .235 .990

50 Side A .150 .260 1.39
Side B .110 .280 1.31
Ave. .130 .270 1.35

75 Side A .150 .300 1.640
Side B .120 .300 1.620
Ave. .135 .300 1.630

100 Side A .160 .310 1.940
Side B .110 .350 1.930
Ave. .135 .330 1.935

C -3-4
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L'PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 4
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1255
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + .003
Specimen Number L65L, -L70L L91L
Specimen Thickness(cm) 0.025 0.025 .025Specimen Width (cm) 1.275 1.278 1.279Applied Load (kg) 11.0 4.4 6.8
Test Stress (MPa) 33.8 13.2 20.5

Side A

O O

Cycle % Creep
Number L65L L70L L91L
1 Side A .08 .00 .01

Side B .09 .00 .01
Ave. .085 .00 .01

5 Side A .15 .03 .03
Side B .17 .01 .03
Ave. .16 .02 .03

15 Side A .37 .03 .06
Side B .21 .03 .05
Ave. .29 .03 .055

25 Side A .47 .05 .08
Side B .31 .03 .06
Ave. .39 .04 .07

50 Side A .61 .05 .11
Side B .59 .05 .10
Ave. .60 .05 .105

75 Side A .75 .06 .13
Side B .71 .06 .15
Ave. .73 .06 .14

100 Side A .95 .06 .15
Side B .86 .06 .17
Ave. .905 .06 .16

C-3-5
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'-P-REDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 5
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003

Specimen Number L94L L49L L103L
Specimen Thickness (cm) 0.025 0.025 0.025
Specimen Width (cm) 1.276 1.277 1.275
Applied Load (Page C-3-7)
Test Stress (Page C-3-7)

Side A

Side B

Cycle % Creep
Number L94L L49L L103L

1 Side A .03 .06 .07
Side B .05 .06 .07
Ave. .04 .06 .07

5 Side A .06 .11 .11
Side B .03 .09 .10
Ave. .055 .10 .105

15 Side A .13 .31 .37
Side B .17 .29 .36
Ave. .15 .30 .365

25 Side A .18 .39 .54
Side B .21 .39 .50
Ave. .195 .39 .52

50 Side A .18 .39 .55
Side B .21 .42 .52
Ave. .195 .405 .535

75 Side A .19 .40 .56
Side B .21 .42 .52
Ave. .20 .41 .54

100 Side A .30 .55 .74
Side B .23 .56 .74
Ave. .27 .555 .74

C-3-6
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t-ZPREDICTION OF CREEP IN PHASE I NAS-1-11774
"'RMETALLIC TPS PANELS SUMMARY REPORT

L605 TEST 5

SPECIMEN L94L SPECIMEN L49L SPECIMEN L1O3L
MEAN MEAN MEAN
LOAD STRESS LOAD STRESS LOAD STRESS

CYCLES (LBS.) (KSI) (LBS.) (KSI) (LBS.) (KSI)
(kg) (MPa) (kg) (MPa) (kg) (MPa)

0-5 9.0 27.7 11.1 60.7 13.0 38.7

6-25 15.8 48.7 19.4 59.9 22.7 69.9

26-75 9.0 27.9 11.6 63.4 12.8 39.4

76-100 16.0 49.4 19.6 60.4 22.0 67.8

C-3-7.
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
L METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 6
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (°K) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L33L E26L L64L
Specimen Thickness (cm) 0.0255 0.0255 0.0259
Specimen Width (cm) 1.278 1.277 1.274
Applied Load (Page C-3-9)
Test Stress (Page C-3-9)

Side A

Side B

Cycle % Creep
Number L33L L26L L64L

1 Side A .02 .05 .05
Side B .02 .04 .06
Ave. .02 .045 .055

5 Side A .05 .08 .10
Side B .05 .06 .10
Ave. .05 .07 .10

15 Side A .07 .13 .14
Side B .09 .10 .16
Ave. .08 .115 .15

25 Side A .10 .14 .19
Side B .10 .13 .19
Ave. .10 .135 .19

50 Side A .12 .22 .28
Side B .14 .19 .31
Ave. .13 .205 .295

75 Side A .20 .36 .46
Side B .18 .37 .46
Ave. .19 .365 .46

100 Side A .25 .54 .77
Side B .25 .50 .75
Ave. .25 .52 .76

C-3-8
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>fiPREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

L605 RUN 6

L33L L26L L64L
CYCLE LOAD STRESS LOAD STRESS LOAD STRESS

(kg) (MPa) (kg) (MPa) (kg) (MPa)

0-5 9.1 27.6 11.1 33.7 13.8 41.0

6-15 10.2 30.8 12.4 37.6 14.8 44.1

16-25 10.9 33.3 13.7 41.6 16.2 48.3

26-35 12.0 36.5 14.7 44.7 17.0 51.7

36-45 12.9 39.2 15.7 47.6 18.2 54.2

46-55 14.0 42.5 17.1 52.1 19.8 58.9

56-66 15.1 45.9 18.4 55.8 2.10 62.5

67-75 16.1 49.0 19.5 59.3 22.2 66.1

76-86 16.7 50.8 20.7 62.8 23.7 70.5

86-95 18.2 55.4 26.4 66.3 24.7 73.5

96-100 19.2 58.3 23.1 70.1 25.9 77.2

C-3-9
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t- PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 7
Alloy Designation L605
Heat Number 1820-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L88L L75L L97L
specimen Thickness (cm) 0.0254 0.0257 0.0259
Specimen Width (cm) 1.279 1.278 1.277
Applied Load (Page C-3-11)
Test Stress (Page C-3-11)

Side A

Side B

Cycle % Creep
Number L88L L75L L97L

1 Side A .11 .18 .24
Side B .11 .19 .24
Ave. .11 .185 .24

5 Side A .18 .36 .56
Side B .26 .39 .55
Ave. .22 .375 .555

15 Side A .35 .55 .88
Side B .29 .60 .89
Ave. .32 .575 .885

25 Side A .35 .64 .98
Side B .34 .66 1.09
Ave. .345 .65 1.035

50 Side A .38 .72 1.09
Side B .37 .73 1.26
Ave. .375 .725 1.175

75 Side A .38 .73 1.15
Side B .38 .76 1.27
Ave. .38 .745 1.21

100 Side A .39 .74 1.19
Side B .38 .78 1.27
Ave. .389 .76 1.23

C-3-10
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'PREDICTION OF CREEP IN PHASE I NAS-1-11774
M ETALLIC TPS PANELS SUMMARY REPORT

L605 RUN 7

SPECIMEN L88L SPECIMEN L75L SPECIMEN L97L
MEAN LOAD STRESS MEAN LOAD STRESS MEAN LOAD STRESS

CYCLE (kg) (MPa) (kg) (MPa) (kg) (MPa)

0-5 19.0 57.4 23.1 69.0 26.6 78.8

6-15 18.0 54.3 21.8 65.2 25.3 75.0

16-25 16.8 50.7 20.7 61.8 24.1 71.4

26-36 16.0 48.3 19.6 58.5 22.2 65.8

37-45 15.0 45.2 18.5 55.2. 20.6 60.9

46-55 14.0 42.1 17.3 51.7 19.3 57.0

56-65 12.9 38.8 16.1 48.1 18.0 53.2

66-75 11.8 35.6 14.9 44.4 16.7 49.4

76-85 11.1 33.5 13.7 41.0 15.5 45.9

86-95 10.2 30.9 12.5 37.8 14.2 42.1

96-100 9.3 27.9 11.3 33.6 12.8 37.8

C-3-!11
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'"PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 9
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (Ko) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L35L L30L L67L
Specimen Thickness (cm) .0246 .0249 .0249
Specimen Width (cm) 1.274 1.278 1.275
Applied Load (kg) 8.6/17.2 10.7/22.3 12.7/25.6

(Per half cycle)
Test Stress (MPa) 26.9/53.7 33.0/68.6 39.2/78.9

(Per half cycle)
Side A

Side B

Cycle % Creep
Number L35L L30L L67L

1 Side A .05 .10 .08
Side B .05 .10 .10
Ave. .05 .10 .09

5 Side A .11 .25 .23
Side B .10 .28 .22
Ave. .105 .265 .225

15 Side A .14 .42 .39
Side B .17 .45 .36
Ave. .155 .435 .375

25 Side A .17 .49 .51
Side B .18 .53 .51
Ave. .175 .51 .51

50 Side A .25 .65 .87
Side B .22 .69 .87
Ave. .235 .67 .87

75 Side A .29 .79 1.17
Side B .25 .76 1.13
Ave. .27 .775 1.15

100 Side A .30 .92 1.40
Side B .30 .89 1.42
Ave. .30 .905 1.41

C-3-12
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LPREDICTION OF CREEP IN PHASE I NAS-1-11774
NIETALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 10
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (oK) 1053
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L55L L47L L87L
Specimen Thickness (cm) 0.0246 0.0249 0.0246
Specimen Width (cm) 1.276 1.278 1.278
Applied Load (Page C-3-14)
Test Stress (Page C-3-14)

Side A

OO

3ide B

Cycle % Creep
Number L55L L47L L87L

1 Side A .02 .04 .05
Side B .02 .03 .05
Ave. .02 .035 .05

5 Side A .05 .09 .14
Side B .05 .09 .10
Ave. .05 .09 12

15 Side A .13 .31 .51
Side B .16 .30 .48
Ave. .145 .305 .495

25 Side A .19 .46 .74
Side B .18 .42 .72
Ave. .185 .44 .73

50 Side A .21 .48 .78
Side B .18 .46 .84
Ave. .195 .47 .81

75 Side A .21 .49 .82
Side B .19 .47 .82
Ave. .20 .48 .82

100 Side A .28 .69 1.23
Side B .25 .71 1.21
Ave. .265 .70 1. 22

C-3-13
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PREDICTION OF CREEP IN PHASE I NAS-1-11774

j METALLIC TPS PANELS SUMMARY REPORT

L605 Test 10

Specimen L55L Specimen L47L Specimen L87L

Mean Mean Mean
Load Stress Load Stress Load Stress

Cycles (kg) (MPa) (kg) (MPa) (ka) (MPa)

1-5 14.7 45.6 21.2 65.6 27.6 85.6

6-25 27.1 76.9 35.3 109.4 44.1 136.7

26-75 15.3 47.5 21.7 67.2 27.6 85.4

76-100 25.4 78.6 35.4 109.6 44.3 137.3

C-3--4
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data
Cyclic Test Number 8
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L60L L66L L28L
Specimen Thickness (cm) 0.0264 0.0264 0.0264
Specimen Width (cm) 1.278 1.274 1.274
Applied Load (kg) 10.2 15.4 25.2
Test Stress (MPa) 29.4 45.3 73.1

Side A

Side B

Cycle % Creep
Number L6OL L66L L28L
2 Side A .01 .05 .18

Side B .03 .06 .18
Ave. .02 .055 .18

10 Side A .03 .10 .39
Side B .05 .11 .40
Ave. .04 .105 .395

30 Side A .05 .14 .77
Side B .07 .16 .72
Ave. .06 .15 .745

50 Side A .06 .17 .96
Side B .09 .20 .94
Ave. .075 .185 .95

100 Side A .09 .21 1.34
Side B .09 .23 1.29
Ave. .09 .22 1.315

C-3-15
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt Cyclic Creep Data

Cyclic Test Number 11
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L38L L43L
Specimen Thickness (cm) 0.0274 0.0257
Specimen Width (cm) 1.276 1.277
Applied Load (kg) 17.7 25.0
Test Stress (MPa) 49.9 75.9

Side A

Side B

Cycle % Creep
Number L38L L43L

1 Side A .09 .22
Side B .09 .19
Ave. .09 ..205

5 Side A .17 .46
Side B .18 .46
Ave. .175 .46

15 Side A ..23 .78
Side B .25 .66
Ave. .24 .72

25 Side A .33 .96
Side B .28 .87
Ave. .305 .915

50 Side A .47 1.41
Side B .38 1.43
Ave. .425 1. 42

C-3-16
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i METALLIC TPS PANELS SUMMARY REPORT

Cobalt
Cyclic Creep Data

Cyclic Test Number 12.
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L77L L71L L86L
Specimen Thickness (cm) 0.0254 0.0249 0.0244
Specimen Width (cm) 1.2786 1.277 1.2788
Applied Load See Table - Page C-3-18
Test Stress See Table - Page C-3-18

Side A

Side B

Cycle % Creep
Number L77L L71L L86L

1 Side A .04 .06 .06
Side B .01 .07 .07
Ave. .025 .065 .065

5 Side A .03 .08 .11
Side B .03 .10 .11
Ave. .03 .09 .11

15 Side A .04 .11 .15
Side B .06 .13 .18
Ave. .05 .12 .165

25 Side A .05 .15 .18
Side B .05 .13 .18
Ave. .05 .14 .18

50 Side A .05 .15 .25
Side B .06 .17 .23
Ave. .055 .16 .24

75 Side A .07 .19 .27
Side B .07 .18 .27
Ave. .07 .185 .27

100 Side A .07 .19 .29Side B .07 .19 .29
Ave. .07 .19 .29

C-3-17
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

L605 Test 12

LOAD , Kg

1ST STEP 2ND STEP 3RD STEP 4TH STEP

SPECIMEN (10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

L86L 5.5 11.2 19.7 24.4

L71L 4.5 9.3 16.4 19.6

L77L 3.4 6.4 11.3 13.7

STRESS n MPa

1ST STEP 2ND STEP 3RD STEP 4TH STEP

SPECIMEN (10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

L86L 17.2 35.2 62.0 76.6

L71L 13.8 28.6 50.7 60.3

L77L 9.2 19.4 34.1 41.3

C-3-18
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PRE DICTION OF CREEP IN PHASE I NAS-1-11774
2', METALLIC TPS PANELS SUMMARY REPORT

Cobalt
Cyclic Creep Data

Cyclic Test Number 13
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm.) 0.025 + 0.003
Specimen Number L41L -L32L L63L
Specimen Thickness (cm.) 0.0251 0.0251 0.0254
Specimen Width (cm.) 1.2777 1.275 1.2778
Applied Load See Table - Page C-3-20
Test Stress See Table - Page C-3-20

Jide A

/ ide B

Cycle % Creep
Number L41L L32L L63L

1 Side A .01 .04 .03
Side B .03 .05 .06
Ave. .02 .0'45 .045

5 Side A .04 .07 .09
Side B .05 .09 .11
Ave. .045 .08 .10

15 Side A .06 .10 .19Side B .06 .13 .13
Ave. .06 .115 .16

25 Side A .07 .11 .21
Side B .07 .15 .16
Ave. .07 .13 .185

50 Side A .10 .14 .24
Side B .07 .17 .19
Ave. .085 .155 .215

75 Side A .10 .19 .26
Side B .07 .18 .25
Ave. .085 .185 .255

100 Side A .12 .18 .27
Side B .07 .20 .28
Ave. .095 .19 .275

. C-3-19
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'PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

L605 Test 13

LOAD N Kg

1ST STEP 2ND STEP 3RD STEP 4TH STEP
SPECIMEN (10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

L63L 5.7 11.7 20.6 25.4

L32L 4.6 9.3 16.2 19.1

L41L 3.5 7.1 12.4 14.9

STRESS ^- MPa

1ST STEP 2ND STEP 3RD STEP 4TH STEP
SPECIMEN (10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

L63L 17.2 35.2 62.1 76.7

L32L 14.1 28.4 49.6 58.4

L41L 10.8 21.8 37.8 45.5

C-3-20
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Cobalt
Cyclic Creep Data

Cyclic Test Number 14 (Continuation of Test 3)
Alloy Designation L605
Heat Number 1860-2-1396
Supplier Cabot
Test Temperature (OK) 1144
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number L53L L61L L37L
Specimen Thickness (cm) 0.025 0.025 0.025
Specimen Width (cm) 1.2778 1.2783 1.2776
Applied Load (kg) 9.1 15.6 24.8
Test Stress (MPa) 27.9 47.6 75.8

Jide A

3ide B

Cycle % Creep *
Number L53L L61L L37L

101 Side A .00 -.01 .03
Side B -.01 .01 -.01
Ave. -.005 .00 .01

105 Side A .00 .01 .08
Side B .00 .01 i10
Ave. .00 .01 .09

115 Side A -.01 .01 .21
Side B .01 .01 .23
Ave. .00 .01 .22

125 Side A .00 .04 .40
Side B .02 .02 .44
Ave. .01 .03 .42

150 Side A .01 .08 .70
Side B .01 .05 .71
Ave. .01 .065 .705

* Creep strains are in addition to those obtained in Test 3.

C-3-21
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" PEDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Cobalt
Cyclic Creep Data

Cyclic Test Number 15.

Alloy Designation L605

Heat Number 1860-2-1396

Supplier Cabot

Test Temperature Trajectory (See Page C-3-23)

Test Direction Longitudinal

Sheet Thickness (cm) 0.025 + 0.003

Specimen Number L34L L85L L80L

Specimen Thickness (cm) 0.0251 0.0259 0.0256

Specimen Width (cm) 1.2743 1.2748 1.2781

Test Stress (See Page C-3-23)

Side A

Side B

Cycle % Creep
Number L34L L85L L80L

1 Side A .13 .27 .08
Side B .13 .25 .08
Ave. .13 .26 .08

5 Side A .18 .52 .11

Side B .26 .40 .10
Ave. .22 .46 .105

15 Side A .34 .75 .17

Side B .33 .66 .15

Ave. .335 .705 .16

25 Side A .37 1.07 .19
Side B .35 1.03 .17
Ave. .36 1.05 .18

50 Side A .55 1.68 .25
Side B .66 1.70 .22
Ave. .605 1.69 .235

75 Side A .79 2.39 .29
Side B .79 2.41 .26
Ave. .79 2.40 .275

100 Side A .97 3.40 .32
Side B 1.02 3.43 .30
Ave. .995 3.415 .31

150 Side A 1.26 - .37
Side B 1.33 .38

Ave. 1.295 .375

200 Side A 1.53 .44

Side B 1.59 .38
Ave. 1.55 .41

C-3-22
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

L605 TEST 15

STRESS ', MPa

CYCLE PRESSURE- SPEC SPEC SPEC
TIME (SEC) TEMP. (OK) Pa. L34L L85L L80L

300 561 .4 - - -

400 1005 2.0 14.9 19.4 10.8

500 1133 2.7 26.3 34.2 19.0

600 1178 3.3 33.2 43.1 24.1

700 1200 4.0 37.5 48.3 27.4

800 1200 4.7 41.1 52.2 30.2

900 1189 5.3 42.6 53.8 31.6

1000 1178 6.9 45.0 55.0 32.5

1100 1161 8.5 47.4 i 59.4 35.4

1200 1150 9.3 51.4 64.5 38.5

1300 1139 10.7 58.7 73.6 43.9

1400 1128 16.0 64.4 80.8 48.2

1500 1111 24.0 73.9 92.7 55.4

1600 1089 40.0 84.5 105.9 63.3

1700 1039 44.0 90.4 114.5 68.3

1800 955 80.0 99.0 125.8 75.7

1900 872 113.3 104.0 132.8 79.8

2000 744 200.0 103.4 132.9 79.5

2100 639 466.6 94.0 122.0 72.1

2200 550 1466.3 83.2 109.0 63.8

2300 478 4478.9 68.1 89.5 52.2

2400 311 11597.1 46.1 62.5 34.5

2500 311 18795.3 27.5 37.7 19.9
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PRED ICTION OF CREEP IN PHASE I NAS-1-11774
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APPENDIX D-1

Ti-6Al-4V LITERATURE SURVEY RAW CREEP DATA

This section contains the raw creep data developed on sheet produced by two
suppliers TIMET (data on pages D-1-2 to D-i-7) and Reactive Metals (data on pages
D-1-8 to D-1-12).

D-1-1C
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ALLOY T-6AL-4V ALLOY - T-6AL-4V ALLOY T-6AL-4V
STRESS (MPA) - 551.6 STRESS (MPA) - 551.6 STRESS (MPA) - 551.6 >

TEMP. (KELVIN) - 589 TEMP. (KELVIN) - 589 TEMP. (KELVIN) - 589 r-
THICKNESS (CM) - 160 THICKNESS (CM) - .160 THICKNESS (CM) - .160 r-O

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 -0

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) v 0
> m
Zm

*010 .5 030 .5 .040 5 m -

l .020 1.5 .040 1.0 .050 1.0 -
.030 5.0 .050 1.5 .060 1.5
.:44 1.S .060 5.0 .070 2.5
.050 5. 0 .070 15.0 .080 5.0
S.060 75. *080 25.0 .090 10.0
.080 100.0 .110 50.0 .100 15.0
• 120 250.0 .120 75.0 .120 25.
o160 50. 0 .130 100.0 .160 50.Z
.16 75 .0 .160 250.0 .170 75.
.210 30 . .190 500.0 .190 100.0
b .21G 750. .230 250.0

.310 1303.0 .280 50o. i
.310 750.0
.340 1003.0 m

-o

ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V

STRESS (MPA) - 551.6 STRESS (MPA) - 586. STRESS (MPA) - 275.8

TEMP. (KELVIN) - 589 TEMP. (KELVIN) - 589 TEMP. (KELVIN) - 700
THICKNESS (CM) - .160 THICKNESS (CM) - .160 THICKNESS (CM) - .102

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259

STRAIN (PCTI) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

.Olu 1.0 .030 .5 .03C .5

.02G 2.5 .040 1.0 .050 1.0

.03C 5.0 .05 1.5 .060 1.5
0.40 7.5 .060 2.5 .080 2.5

.050 50.0 .090 5.0 .120 5.G
06G 1o 100 10.0 . 50 7.5

.2 15.0 .180 10.0 z
.140 25.0 .220 15.0
.170 50.0 .270 25.0
.190 75.0 .340 50.0 -
.210 1.. 0 .400 75.0
.250 250. 470 100.0
.310 500.0
.370 750.0
.430 1000.0



ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V m
STRESS (MPA) - 344.7 STRESS (MPA) - 137.9 STRESS (MPA) - 137.9TEMP. (KELVIN) - 700 TEMP. (KELVIN) - 700 TEMP. (KELVIN) - 70 rTHICKNESS (CM) - .102 THICKNESS (CM) - .160 THICKNESS (CM) - .160 r 0

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-2590 Z
-10

C -o-n
STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT*) TIME (HOURS) 0

0> m
.080 .5 .010 2.5 .040 zI. m
.100 1.0 .020 5.0 .050 15.0 r-
.110 1.5 .03C 10.0 .070 25.0 Z.120 2.5 .040 15. G .110 50.0* 160 5. 0 .05C 25. 0 .130 75 ,O .190 7.5 .090 50.0 .150 100..210 .. 110 75 .180 25.
.24C 15. .130 103.0 .250 500.0
.310 25.C .210 250.0 .300 750.0c
.460 50. 0 .270 500. .340 10 00.

.320 750.3

.360 1300.0
mm

ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V
STRESS (MPA) - 172.4 STRESS (MPA) - 172.4 STRESS (MPA) - 172.4 C

TEMP. (KELVIN) - 700 TEMP. (KELVIN) - 700 TEMP. (KELVIN) - 703
THICKNESS (CM) - .160 THICKNESS (CM) - .160 THICKNESS (CM) - .160

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259

STRAIN (PCT.I TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

.030 .5 .020 5.6 .020 .5

.040 1.0 .030 10.0 .03c 1.0
, .050 1.5 .040 15.0 .040 2.5

.060 2.5 .060 25.0 .050 5.0
S.080 5.0 .080 50. .060 10,

S .100 7.5 .100 75.0 .080 15,0
.110 15.0 .120 103.0 .100 25.0
.130 25.0 .170 250.0 .170 50.0
.160 50.0 .230 500.0 .210 75.0 z
.180 75.0 .290 750.0 .240 100.0 >
.210 100.0 .330 10G0.0 .340 253.0
.300 250.0 .430 500 0 I
.380 500.0 .500 750 .
.460 750.0



ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V .
STRESS (MPA) -2068 STRESS (MPA) - 241.3 STRESS (MPA) - 241.3 r

TEMP. (KELVIN) - 720  TEMP, (KELVIN) - 70 TEMP. (KELVIN) - 700 0

THICKNESS (CM) - .160 THICKNESS (CM) - .16j THICKNESS (CM) - .160 2
SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259- 0

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) > m
2 m

.030 .5 .020 5.0 .040 .5 r-

.040 1.C .040 7.5 .050 1.0

.05. 2.5 .050 1.o .070 1.5

.060 5. .070 15.0 .080 2.5

.070 7.5 100 25. .090 5.0

.080 10.0 .140 50.0 .100 7.5
0 .090 15.0 .170 75.0 .110 10.0

.120 25.0 .200 I00.0 .130 15.0

.170 50.l .330 250.0 .150 25.0 c

.210 75.0 .430 500.0 .200 50.0

.240 100.0 .240 75. u
S.370 250.0 .270 100.0 

.390 250.0

- u

ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V
STRESS (MPA) - 241.3 STRESS (MPA) - 310.3 STRESS (MPA) - 413.7

TEMP. (KELVIN) - 700 TEMP. (KELVIN) - 700 TEMP. (KELVIN) - 700
O THICKNESS (CM) - .16i THICKNESS (CM) - .160 THICKNESS (CM) - .16.
O SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

.060 5.0 .04 i 5 .060 .5

.080 7.5 .05C 1.0 .090 1.0
I .090 10.0 .060 1.5 .120 1.5

.120 15.Z . 07 2.5 *140 2.5

.160 25.0 .080 5.0 .160 5.0

.260 50.0 .100 7.5 .180 7.5 z

.320 75.0 .120 10.0 .200 10.0

.370 100.0 9150 15.0 .230 159. 1
.250 25.0 .280 25.0
.320 50.0 .380 50.0 _

.400 75.0 .450 75.0

.460 10.



ALLOY - T-6AL-V ALLOY - T-6AL-4V ALLOY - T-6AL-4V
STRESS (MPA) - 413.7 STRESS (MPA) - 27.6 STRESS (MPA) - 34.5

TEMP (KELVIN) TEMP. (KELVIN) - 811 TEMP. (KELVIN) - 311
THICKNESS (CM) - .160 THICKNESS (CM) - .102 THICKNESS (CM) - .102 m

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 >c

STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) z z
t -- n

.200 1.5 .010 .5 .020 .5m

.270 2.5 .020 1.0 .030 1.0

.390 5. 0 030 1.5 .040 1.5 2 m

.470 7,5 .040 2.5 .060 2.5 m -
.060 5.0 .090 5.G r-
.080 7.5 .100 7.5 cn Z

ALLOY - T-bAL-4V .090 1050 .130 10.0
STRESS (MPA) - 51.7 .110 15.0 .170 15.0

TEMP. (KELVIN) - 811 .150 25.0 .220 25.0
3 THICKNESS (CM) - .102 .250 50.0 .360 50,0

SOURCE - AFMLTR6-259 *340 75.0 .450 75.0
.440 100.0

STRAIN (PCT.) TIME (HOURS)
ALLOY - T-6AL-4V ALLOY - T-6AL-4V

STRESS (MPA) - 172.4 STRESS (MPA) - 6.9
.020 .5 TEMP. (KELVIN) - 811 TEMP. (KELVIN) - 811
.030 1.0 THICKNESS (CM) .102 THICKNESS (CM) .163n .050 1.5 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 m
.070 2.5
.120 5.0 C
.180 7.5 STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)
.210 10.0
.290 15.0
.430 25.0 .200 .5 .010 1.5

.330 1., .020 2.5
ALLOY - T-6AL-4V .030 7.5

STRESS (MPA) 8.3 ALLOY - T-6AL-4V .050 25.0
TEMP. (KELVIN) - 1160 STRESS (MPA) - 8.3 .090 50.0THICKNESS (CM) - .160 TEMP. (KELVIN) - 811 .120 75.0

SOURCE - AFMLTR6-259 THICKNESS (CM) - .60 .140 100.0
SOURCE - AFMLTR6-259 .200 250.

.230 500.0SSTRAIN (PCT.) TIME (HOURS) .240 750.0
STRAIN (PCT.) TIME (HOURS) .260 iOO0.

.020 2.5 z

.030 7.5
.040 25.5 02 25
.050 50.c .03 5.0
.070 75. 03 , .0040 luwo u

080 100, .090 25i..160 250.C .170 500o.L
. 50 503,L .250 75 .0
.320 75 ..
.360 1060 .310



ALLOY - T-6AL-4V ALLOY - T-6AL-4V
STRESS (MPA) - 10.3 STRESS (MPA) - 13.3 STRESS (MPA) - 1:2J

TEMP. (KELVIN)- 11 TEMP (KELVIN) - 811 TEMP. (KELVIN) - 811m
THICKNETHICKNESS (CM THICKNESS (C - .16 THICKNESS (CM) - .160

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTP6-259 m

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) r-

. . 010 75. 010 2.5 .010 .5 0
0 030 100.0 .020 7.5 .020 2.5 "

S080 250.0 .030 15.L .030 7.5 m
0 .163 500.0 .050 25.0 .040 15.0 m250 75G.0 .120 50. .050 25.0 m.330 1o00.o .170 75.0 .070 50.0 m-

.230 100.0 .090 75.0 r-,
S100 10.O

ALLOY - T-6AL-4V .160 250.0
0 STRESS (MPA) - 13.8 ALLOY - T-6AL-4V .230 500.0
o TEMP. (KELVIN) - 811 STRESS (MPA) - 13.8 .290 750.6

THICKNESS (CM) - .16' TEMP. (KELVIN) - 811 .350 1000.0
)0 SOURCE - AFMLTR6-259 THICKNESS (CM) - .160

SOURCE - AFMLTR6-259 -T
S ALLOY - T-6AL-4V c

STRAIN (PCT.) TIME (HOURS) STRESS (MPA) - 138
b STRAIN (PCT.) TIME (HOURS) TEMP. (KELVIN) - 811
I THICKNESS (CM) - .160

.0*10 2.5 SOURCE - AFMLTR6-259 -

. 020 5.0 .040 5.0 nS .030 10.0 .060 7.5 r

.040 25.0 .090 10.L STRAIN (PCT.) TIME (HOURS) -0u
C .050 53.0 .100 15.0

.070 75.0 .110 25.0'

.080 1c..0 .150 50.0 .020 2.5

.170 25C0. .180 75.0 .030 7.5

.320 50C. .210 100.0 .040 15.0
.45C 75.0 .300 250.0 .050 25.0

.410 50G0. .090 50.u

.500 750.C .110 75.0
ALLOY - T-6AL-4V .140 100.0

STRESS (MPA) - 68.9 ALLOY - T-6AL-4V .260 250.0
t TEMP. (KELVIN) - 811 STRESS (MPA) - 63.9 .430 500.
, THICKNESS (CM) - .163 TEMP. (KELVIN) - 811

SOURCE - AFMLTR6-259 THICKNESS (CM) - .16 ALLOY - T-AL-V
b SOURCE - AFMLTR6-259 ALLOY - T-6AL-4V

SOURCE - A R STRESS (MPA) - 82.7
SSTRAIN (PCT.) TIME (HOURS) TEMP. (KELVIN) - 811

STRAIN (PCT.) TIME (HOURS) THICKNESS (CM) - .160
SOURCE - AFMLTR6-259 z

.050 5.0 n

.060 7.5 .100 1.0
.080 1G.0 .130 1,5 STRAIN (PCT.) TIME (HOURS)
.100 15.0 .150 2.5
.170 25. .200 5.0
.300 50.L .250 7.5 .310 5,-
.400 75. c .300 10.0 .410 7,5
.500 100.0 .400 15. .480 10.



ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V 1
STRESS (MPA) - 82.7 STRESS (MPA) - 86,2 STRESS (MPA) - 103.4 r-

TEMP. (KELVIN) - 811 TEMP. (KELVIN) - 811 TEMP. (KELVIN) - 811 ro
THICKNESS (CM) - .160 THICKNESS (CM) - .160 THICKNESS (CM) - .160 0 Z

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259-i O

qj STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) > mZm

.210 5.0 .100 1.5 .200 1.5 r-

.270 7.5 .150 2.5 .300 2.5 a

.330 10.0 .25C 5.0; .450 5.0

.440 15.0 .330 7.5
.380 10.0

ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V R
STRESS (MPA) - 103.4 STRESS (MPA) - i10.3 STRESS (MPA) - 137.9

(A TEMP. (KELVIN) - 811 TEMP. (KELVIN) - 811 TEMP. (KELVIN) - 11
THICKNESS (CM) - .160 THICKNESS (CM) - .160 THICKNESS (CM) - .160

SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 c-
m _

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT,) TIME (HOURS) c

0 -I
.100 .5 .120 .5 .150 1.0
.130 1.0 .180 1.0 .250 1.5
.170 1.5 .240 1.5 .350 2.5

O .240 2.5 .320 2.5
.400 5.0 .500 5.0

ALLOY - TO NICR
STRESS (MPA) - 9.1

STRESS ALLOY - T-6AL-4V TEMP. (KELVIN) - 1333
STRESS (MPA) - 137.9 THICKNESS (CM) - .038

TEMP. (KELVIN) - 311 TEST DIRECTION - TPANS.
THICKNESS (CM) - .160 SOURCE - NAS-8-27189

SOURCE - AFMLTR6-259
z

STRAIN (PCT.) TIME (POURS) >
STRAIN (PCT.) TIME (HOURS) STRIN (PCT) TIE ( S

, 95 2.0
4200 .5 .150 6.-
.270 1.0 .195 18. 4
.330 1.5 .15 26
.440 2.5 .234 40*

.25 e5. 0

.270 12 .

.293 4" , o

.31u 14;



ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V > .

STRESS (MPA) - 44 .2 STRESS (MPA) - '51.9 STRESS (MPA) - 475.7 -

TEMP. (KELVIN) - 589 TEMP. (KELVIN) - 589 TEMP. (KELVIN) - 589 rO
THICKNESS (CM) - .16" THICKNESS (CM) - .16* THICKNESS (CM) - .160 z

SOURCE AFMLT-2 SUC - AFMLTR6-59 SOURCE - AFMLTR6-259 0

o STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

m

.038 19.7C3 .048 19.800 .C74 18.5300 -

.069 45.203 .087 43.200 .139 44.100 c Z

.94 7C.13 .117 66.530 .174 69.003
• 09 93.0.3 .141 91.000 .192 92.(GO

O .125 164.9 0 .156 115.303 .206 115.7%J
S .135 ?13.820 .172 163.800 .220 140.100

14 27.3ci .177 186.803 .228 163.70G
P .15' 3E59.93 . 190 26 E.1 .242 191.10

b 164 429.30 18 306.200 .250 212.703
A.165 77.3 ,.203 331.200 .255 236.100

b .171 528.600 .211 378.9C .263 2E.C03
t .182 597.400 .216 427.0%3 .269 286.200

.187 646.630 .229 470.700 .285 332.200 -3o *19~ 721.5% .232 493.400 .291 35.80

.203 79.6 0 .236 546.400 .318 452.200 __

.20 225.40 .242 570.000 .323 476.200 -0

.21: 861.90 .246 594.350 .336 527.500 O

.21i 933.402 .255 643.100 .343 571.800

.222 983.800 .263 691.0,0 .367 645.600
2 .29 1252.8C0 .272 719,080 .370 693.503
,235 11C5.70 .275 769.20) .388 740.600

.284 818. 4 0 0 ,409 788.500

.289 E65.5c0 .416 836.3G3

.3C2 919.64 .424 860.800

.307 943. C0 .439 908.000
.451 956.200
.457 979.900
.474 1051.700
.481 1076.5L0
*488 1100.400

iC,2

U >



ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4VSTRSS (MA) - 96.4 STRESS (MA) - 537. 8 STRESS (MPA) - 689,5TEMP. (KELVIN) - 59 TEMP. (KELVIN) - 589 TEMP. (KELVIN) -
THICKNESS (CM) - .16HICKNESS 16 THICKNESS (CM) - .16 0SOURCE AFMLTP6-59 SOURCE - AFMLTR6--59 SOURCE - AFMLTRP6-259

STRAIN (PCTi) TIME (HOURS) STRAIN (PCT.) TIM7 (HOURS) STRAIN (PCT.) TIME (HOURS) 0 Z
rO

8.033 2.5O ..033 .4CO .32 .020
S 16?292 122 .009co .071 .250.1836 26.700 THICKNESS 1(C . .148 G.703S 223 43. 0 SOURC- AFLTR6-O .171 1148mS.228 5C.40 .16 2.3 .265 .130 r-S v .247 66.100 .287 4PCT) TI 5. .351 .170 n Z.2E6 91.503 .489 6.300 .03 5.200.288 115 9360 .497 *250

7 292 122.600 .059 19"6L-139.0C0 ALLOY - T-6AL-4V o063 25.300S327 12.7ST3 STESS (MPA) - 565427. 037 42.500S.349 TEMP16*80 TEMP. (KELVIN) - 589 .137 426.200THICKN.35 211.10 THICKNESS (CM) - .116 149 90.30SOURCE386 234,7-FMLTR0 SOU-259 18 3100 171 114.800
.4=5 32'6w800 .192 186.200

3261 4,100 .252 593600

STRAI 33300 STRAIN (PCCT) TITI (HOURS) .196 21.2.00.491 355.10 .202 233766,03.209 35,700 _b .071 .200 .212 332.300 -0
ALLOY - -AL-4V 0T-6L6 .5V 219 37815.00 oSTRESS 00 STRESS (MPA) - 557 .10 289 426000 TEMP (KELVIN) -58 .2 .6C .233 470.200STHICKNESS THICKNESS (CM) - 2.316 0 235 497.700SOURCE - AFMLTR6-259 .189 3.1 .24305 521.7,

38 .261 4100 .252 593.63

STRAIN (PCTCT TIME (HOURS) 273 717,7[6
9.0273 766.ALLOY - T-6AL-4V 282 815.c220026 .050 STRESS (MPA) - 655. .289 3E5,70.049 .100 TEMP. (KELVIN) - 59 .295 916.27J

.102 .23 15HICKNESS (CM) 160 301 94050221 .292 SORCE - AFMTR-9 .35 949 .7.4335 .32 .5

.398 .903
STRAIN (POT.) TIME (HOURS)

.154 .2L"

.23: .30

.29? .4o_

.47" .23-



ALLOY - T-6AL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4V
STRESS (MPA) 20 .3 STRESS (MoA) - ?5.1 STRESS (MPA) - 279.2TEMP. (KELVIN) - 7 TEMP. (KELVIN) - 7 TEMP. (KELVIN) 7 -THICKNESS (CM) - .15 THICKNESS (CM) - .1 THICKNESS (CM) - .150SOUPRC - AFMLTRE-259 SOURCF - AFILT P - 5 9 SOURCE - APMLTP6-259 m

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

*72 18.7 0 .0•9 13.23 .217 17.2, -0" .159 43.920 .207 42.000 .239 24.23 m190 67.1i0 .269 66,°C~ .275 39.3"
,, .221 91.503 .310 90 ,20 332 65.0C:: rS.235 115.4U2 .347 1138 0 .370 899 mf .259 139.300 .405 161,6 j o4C. 112.865 m

M .2*275 163.5.1 .41 185.9c3 0458 13.7^n r -.282 187.2200 .446 21 30 o492 161.1 Z
P .309 235.0 3 .452 234.9 '

S .322 259.3.0 .e69 257.90
0 337 283.770 .490 281.Ci0 ALLOY - T-6AL-4Vv *34- 37. 8f0 STRESS (MoA) - 45.1* 351 331.2 C TEMP, (KELVIN) - 7 -
P .356 354.4'5 ALLOY - T-6AL-4V THICKNESS (CM) - ,5.373 4C3.9cL STRESS (MPA) - 399.9 S.OURCE AFMLTP6-259 Cm .394 +51.13. TEMP. (KELVIN) - 700
S.405 499.00 THICKNESS (CM)- .160

.429 571 75 SOURCE - AFMLTR6-259 STRAIN (PCT,) TIME (HOURS) ".442 595,31^o .445 619.6 3
o .464 69q2.90 STRAIN (PCT.) TIME (HOURS) .096 .1i0. rm

.485 738.50% .179 .30S.496 723.81 .261 5C0 0
.090 .7 0 .287 .6.188 2.503 o299 ,650 "

ALLOY - T-6AL-4V .302 5. .304 76 uSTRESS (MPA) - 31".3 .362 .2
TEMP. (KELVIN) - 700 .48 1.1.o THICKNESS (CM) - .160 49 15.1

SOURCE - AFMLTR6-259 ALLOY - T-6L-4V 50

STRESS (MPA) - 493.1 ALLOY - T-6AL-4V
TEMP. (KELVIN) - 70 STRESS (MPA) - 517.1STRAIN (PCT,) TIME (HOURS) THICKNESS (CM) - .160 T-E;, (KELVIN) - 70

SOURCE - AFMLTR6-?59 THICKNESS (CM) - .16c
62 . SOURCE - AFMLTR6-259062 5

b.087 1.5 STRAIN (PCT.) TIME (HOURS)
.195 4,6; STRAIN (PCT.) TIME (HOURS).303 I8.5c
.317 26.20J .153 .050 2
.382 42. 70 .225 ,12 .107 .02 >
.409 '0 330 .278 .15 .187 .030 m
.453 t7,20 .33? .22, .243 .05
.465 74.1i0 .420 .300 .275 .C7 I.488 89,922 .447 .42 .317 ,

.363 .103

.421 .1

.47 ,.17
, 4 9q,



ALLOY - T-EAL-4V ALLOY - T-6AL-4V ALLOY - T-6AL-4VSTRESS (MPA) - 551.E STRESS (MPA) - 579.2 STRESS (MPA) - 62j S.LTEMP. (KELVIN) - 70 TEMP. (KELVIN) - 7,3 TEMP. (KELVIN) - v "vTHICKNESS (CM) - .160 THICKNESS (M(CM) - 160
SOURCE - AFMLTR6-259 SOURCE - AFMLTP6-59 SOURCE - AFMLTP6-259

LSQURCE - AFMLTP6-259STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT*) TIME (HOURS) -
r- o0

o084 .010 .745 .C20 .275 .004 -1 0•192 .C20 .445 C 33 o413 .008 -o "mS .229 .025 . 3413 0O .283 .033 .005 3.830. 012 
19.600 

> m
.334 .040 ALLOY - T-6AL-4V *~43 68.3C0 Z mS387 .5 STRESS (MPA) - 15.2 .061 92.100 m o-S.472 .070 TEMP. (KELVIN) - 811 .15 165.6C0 r-

THICKNESS (CM) - .160 .117 165.7C0 n
SOURCE - AFMLTP6-259 .125 260.500ALLOY - T-6AL-4V .139 308.500STRESS (MPA) - 10.3 142 351.900TEMP. (KELVIN) - 811 STRAIN (PCT.) TIME (HOURS) 156 4351.900

THICKNESS (CM) - .160 .171 455.060
SOURCE - AFMLTR6-259 014 .177 5CC.3C0 c.014 2400 *182 549.200 ".01 5.600 210 621.400 cSTRAIN (PCT.) TIME (HOURS) .09 2330 .232 670.50O

41C5 46.8j0 .241 740.400 --.147 7 .01 40 .257 790.100 0
S008 2.8 .202 94.700 .269 793.600.014 4.3 *276 142o6C0 .293 932.60 m.031 21.1 .325 194. C00 .305 iOC4. 00 m-.043 28.6 *347 213.400
*070 47.3 .411 2 3.000 o
*101 69,8 o434 312C3 -4*.14 117.7 ,493 359.900 ALLOY - T-6AL-4V.164 142.4 STRESS (MPA) - 17.2.1682 165.7 TEMP. (KELVIN)- 811.216 217.0 ALLOY - T-6AL-4V THICKNESS (CM) - .160"6 -217.0 STRESS (MPA) - 34.5 SOURCE - AFMLTR6-259.22148 26.03 TEMP. (KELVIN) - 811
.253 309.6 THICKNESS (CM) - .163
.266 3 3 5.0 SOURCE - AFMLTR6-259 STRAIN (PCT.) TIME (HOURS)S.275 382.9

S326 478,3 STRAIN (PCT.) TIME (HOURS) *004 1.160.345 549.6 
.060 17.600.380 621.3 .073 25.000.393 E45,7 .031 1.0*0 .121 40,500.406 E95.3 .052 3.1Go .1iE5 65.80 z.429 740.7 .067 4.9C0 .218 90.400>

.433 766.2 .142 17.C0O .263 113.600 W.462 789.9 .164 21.200 .300 1376 0.452 .181 23.40 e341 162.00452 8d20.7 .263 21.400 .341 16.00475 845.1 .291 8.1 .384 18.100.484 87 .0 .370 65.4 0 .453 213. 00.491 395.3 .466 9. .65 234433



ALLOY T-6L-4V ALLOy - T-AL-4V ALLOY - T-6AL-4V m

STRESS (MPA) 75.8 STRESS (MPA) - 11. TEMP A (KELVIN) - -aA
TEMP. (KELVIN) - TEMP KELVINCM) - 1THICKNESS CMLVIN) -THICKNESS (CM) - iG THICKNESS N) - 1 THICKNESS CM) - -F r 0SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259 SOURCE - AFMLTR6-259z-0

STRAIN (PCT.) TIME HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TI. (-)URS) m)
- 0

.07 .507 .079 0 m16.071 *500 0 200 *18 *00 r -
.122 1.2 107 *3.0 167 .2GO emn.152 1.600 .128 .0 *211 .*3 ZS.171 2.00 12 .700 .250 .400.237 4.177O .50017.261 2.900 212 .900 .278 .570

3 . c .240 1.100 .300 .70.2 5.5O0 .29 1,3 .320 .600.285 6.237 ,300 1.350 .346
.262 6.500 .382 2.00] .392- .900

.2S9 6.600 .427 2.5C 4 .0 a
7. .305 7.1 .427 23.0050 .426 1.00

*494 .483 1.300 ? D'I0

r m
-

ALLOY - T-6AL-4V ALLOY - T-oAL-4V ALLOY - T-6AL-4V
STRESS (MPA) - 275.8 STR2SS (MPA) - . STRESS (MPA) 43117 -TEMP. (KELVIN) - 811 TIP. (KELVIN) - TEMP. (KELVIN) - 811

THICKNESS (CM) - .160 Ti~KNFS (CM) - . THICKNESS (CM) - 16C
SOURCE - AFMLTP6-259 SOURCE - ;', T-5 THCN SOURCE - AFMLTR6-259

STRAIN (PCT.) TIME (HOURS) LT r (PCT.1 rI FT I) STRAIN (PCT.) TIME (HOURS)

.065 .020 .109 .020 .183 .004

.103 .030 .202 .030 .297 ,008
,138 .050 *267 .050 .442 .012
S168 .070 .301 *063
*186 .080 .340 .070
.205 .100 .401 .080
.244 .130 .454 .100 z
.259 .150
.282 .170
.298 .180 I
.315 .210 I
.356 .230
.382 .270
.410 .300
.441 .330
.469 .370
.4S9 .400



PREDICTION OF CREEP IN PHASE I NAS-1-11774
jV;' METALLIC TPS PANELS SUMMARY REPORT

APPENDIX D-2

Ti6Al-4V SUPPLEMENTAL STEADY-STATE CREEP TESTS (RAW DATA)

This portion of Appendix D presents the results of the supplemental steady-
state creep tests. All strains shown are total plastic strains. For informa-
tional purposes the elastic strains are presented below for the individual tests
in order of their appearance in this section. Elastic strain "A" was measured
at the start of the test while elastic strain "B" was measured at the conclusion
of the test.

SPECIMEN # ELASTIC STRAIN, %

A B

TO1L .419 .390
T03L .198 .171
T11L .417 .421
TI2T .381 .405
T13T ---- .208
T21L .278 .186
T23L .065 .055
T26L .444 .449
T34L .234 .202
T36L .051 .055
T74L .577 .563
T76L .385 .378
T82L .209 .221
T92L .544 -.548
T104L .380 .372

D-2-1

MCDONNELL DOUOLAS ASTRONAUTICS COMPANYv. EAST



m

ALLOY - TI-64L-4V ALLOY - TI-, AL-4V ALLOY - TI-EAL-4A V >STRESS (MPA) - 47-,7 STRESS (MOA) - 17. )  STRESS (MPA) -165o. r
TEMP. (KELVIN - 16 TEMP. (KELVIN) - 16 TEMP. (KELVIN) - r-
THICKNESS (CM) - .:3 THICKNESS (CM) - .23, THICKNESS (CM) - .3 O

SPECIMEN NO. - M-AC-E- T92L SPECIMEN NO. - M.1A-E- 134L SPECIMEN 140. - M AC-E- T12L - O

STRAIN (PCT.) TTME (-OUPS) STRAIN (PCT.) TIME (HOUS) STRAIN (PCT.) TIME (HOURS) >
r m

m"
b *1 j .1 oa8 .1 08 1 r -P *.18 .2 .o15 .2 .C12 .2

S* 2; .3 .:18 .3 .013 .3o .25 . .. 1 .5 .16
0 .031 .8 2:18 .8 .15 .8

•I .Z3i .019 . .316 •.
P *}39 • . 21 1•5 i.

S. 42 2. .021 122.- 321 2.2 C
*055 4.0 .028 4s , 4.

S66 .32 1031
*,76 14., oC ; 12 . 6 .035 12. -O .*96 21.0 .U42 19.C .066 7.G

*16 25. .49 2'5. .. 73 70.2 m
* ON 3. .52 3 . .79 75.

S.115 35. .53 35.T .87 3. o.123 38. .C61 E7.C .. 84.
*13 4.C .66 .87 91.

S.137 .071 75. C .082 95.c
.278 8 •. .78

o .279 84. .J81 15.
. 78 91. 84 18.

n*69 95.E 377 11 .
. 71 r'  .085 12C.,

. 74 10 .'o .Z82 !25.u

.275 1 8. .82 13 .
.:85 163. 384 139.
. 85 E~~ . 88 145,
085 17 . 0 . 87 15 .

• . 88 175. .'94 53S.1288 18.1 .9 15.C
S394 187. 1 17-.
.94 19,. .;99 17. >
•C9R 195. 1,L2 lo!

9395 q20 . .1.3 2 "L I

l"5.

rc4i



ALLOY - TI-6A4L-4V ALLOY -- TI -AL- V >
STRESS (MPA) - 317•2 STRESS (MPA) - 317.2 STRESS (MPA) - 317.2 r- -TEMP. (KELVIN) - e5 TEMP. (KELVIN) - 658 TEMP. (KELVIN) - 714 r 0

THICKNESS (CM) - .33. THICKNESS (CM) - . 30 THICKNESS (CM) - . 63 o Z
SPECIMEN NO. - MDAC-E- T76L SPECIMEN NO. - MDAC-E- TI2T SPECIMEN NO. - MDAC-E-TiL - 0

0

0 STRAIN (PCT.) TIME (I-OUPS) STRAIN (PCT.) TIME (HOUrS) STRAIN (PCT.) TIME (HOURS)
I Zm

F 14 .1 .009 .1 .02, r- 83
* ]18 .2 .. 9 .2 ,034 .170 z
.L24 .3 .31. .Z .045 9250
.032 .5 .065 .50

4.34 . . .8 .090 .750
*04* .012 .104 i,*ngp .43 1.5 .29 i• .129 i l5

b *949 2. .029 2. .153 2.0o
S*65 . .26 3. .183 3.000 c

.074 4.0 .Z39 4 .2t4 4.0

.080 5.. .43 5. .235 5.0 I.97 10. .074 13. .326 1 a.0O

.*113 1. o081 1 .6 .474 19.o3 .
0 126 22.; .091 21.u .496 21.0 O1 m

..144 25. .99 26. .543 25.000 m

.161 30. 177 29 .C *584 3C. "

.16, 35.( .105 37.. .647 35.00? o

.166 39.0 .111 43.0 .718 43. r7,JS179 46.L .119 .48.L 788 5c,. 02

.177 %.C .109 53.0 .799 52.000

.182 55. .139 62*. .715 43.0 0o .192 60.1 .142 66. 788 50

.233 63.. .157 71.' .759 52.0 3

.237 118. .175 76.0

.244 1*20. .218 133.0

.244 125.L .216 138.0

.245 13CJ.O .224 143.0 L
, .247 135. 0 229 148.0

S.252 142.0 .228 157.
.255 145.0 .239 165.0

S.257 15r.0 .241 171,0
.265 155. .244 173.
.271 159. . .24'; 181.C
.273 166.0 .24J 18 6. Z
.275 17 . .255 191.
.278 175.L .261 200. 0
.283 18. 0 .253 209.6
.289 184. .253 215.0
.281 191.0 .266 217.5
.283 195.
.287 20 .2



moI
ALLOY -T TI-AL-4V ALLOY - TI-6AL-uV ALLOY - TI-bAL-V > _

STRESS (MPA) - 165.5 STRESS (MPA) - 165.7 ST'ESS (MPA) - 317.2
TEMP. (KELVIN) - 714 TEMP. (KELVIN) - 716 TEMP. (KELVIN) - 14 r
THICKNESS (CM) - .3 THICKNESS (CM) - 63 THICKNESS (CM) - 31 o

SPECIMEN NO. - MCAC-E- T13T SPECIMEN NO. - tDAC-E-T3L SPECIMEN NO. - MrAC-,- T26L -- 0

O STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STPAIN (PCT.) TIME (HOUPS) > M
2 m
nm -

M11 .1 .6 .C83 o014 .1 r-
.0 13 .2 .28 .17 . 35 .
.013 .3 035 .250 ,J45 .
.19 .5 .543 .53 C65 .
. 29 .8 .046 .75 77
.1 38 1. C .955 IO0U, .1j2 1.
. 44 1. 5 059 15; 115 1.5
.055 2. .068 2.00C .139 CO
.0 59 3 .081 3.C0 *17u 3.
.368 4. .090 4 o *191 4o i

81 5. o.102 5. .221 5. -
.118 13. C .133 10.c;J .298 1 .w

S *127 15. .141 13.03 .323 13.2

C .195 37.. .228 37.500 .576 35.o
S.199 39. .31 73.500 .600 37..
C .217 44. .351 92.5?3 .68 45.

.225 49.0 .363 96.50

.236 54.0 .361 i .5 0
o 322 109. .376 1r5L.5 0
.334 116.c .379 j9*5f0
.348 121. .383 117.5C3
.351 12b6, .390 122.5 5 3
.352 133. 0 .394 127.5A
.36% 141.,0 .398 i32.50 0
.371 146.o .43 134,.52 3

I .379 150. J .419 141.50
.395 157. 0 .427 146.5

S.394 165. ; .427 11.50
, 407 17 C .434 16.5j 0.411 174, C .441 158.5ra z

.423 182.* .46 165.5i0
.435 189. .467 170.5 0
.442 194. . .455 175.573
.443 198. .461 180.5i -1
.464 205.~ .480 188 "
.458 ?08., .482 194.S50

.484 199,5 0



m-

ALLOY - TI-6AL-4v ALLOY - TI-6AL-4V ALLOY - TI-64L-4V >
STRESS (MPA) - 475.7 STRESS (MPA) - 48.3 STRESS (MPA) - 165.5 r

TEMP. (KELVIN) - 658 TEMP. (KELVIN) - 714 TEMP. (KELVIN) - 714 r
THICKNESS (CM) - .33 THICKNESS (CM) - .03' THICKNESS (CM) - .330 2Z

SPECIMEN NO. - MOAC-E- T74L SPECIMEN NO. - MlAC-E- T36L SPECIMEN NO. - MDAC-E- T34L 0

O STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOUP, S) > m
Zm

.002 .1 *0036 1 c -
.026 .2 .17 .2 .011 .2
.045 .3 .U19 .3 .021 3
.07 .C2 .5 .024 .5
.86 .8 .--24 .8 .026 .8
.1 1. .031 1.0 .039 1.
.125 35 5 .143 165
.153 2. .039 2. .056 2.C co
.183 3.0 .041 3.0 .463 3.. c
.213 4.- .041 4. .074 4.0
.225 5,L .w41 5. .084 5. 3
.335 1 .035 15.0 .118 1,.0tj .367 42 .035 23.0 .146 2. -o . .475 19 .339 253 .161 25.
.491 2 .252 3).Q .176 3 .0 _
.507 21.3 *051 39o0 .187 35. -

C .522 22.C .354 45.' .281 91.0 0
.535 23., .063 500. .296 95.0

0 .545 24.- .072 54.1 .33 10 .3
5.561 25... .066 63.1 .3u9 135.2

.572 2b. .07 667. . .318 115.
o .585 27. .07, 70. .336 12C.0

.589 28. * .77 75, .327 125.0

.594 29.. .083 79. .337 13C.C

.612 3 .0 * 35. .346 139..
090 14 .C .353 i45..
SC91 145. .358 !5C,S.96 15'. .376 155,

. 9, 159. .383 163.L

.090 165.0 .384 165.G

.090 17. .391 17f.
' .89 175.~ .385 175.

.87 193.L .411 18u.
. 92 185. .409 186. 6 Z

.85 19 411 193.
* 93 1 -195.. .15 1 IC.,87 199. .416 2..VJ 3 207.

h~b,4



ALLOY - TI-6AL-4V ALLOY - TI-A L-4V ALLOY - TI-6AL-4V - 0
STRESS (MPA)- 31.2 STRESS (MPA) - 43.3 STRESS (MPA) - 165.

TEMP. (KELVIN) - 714 TEMP. (KELVIN) - 78? TEMP. (KELVIN) - 783 0
THICKNESS (CM) - •.3 THICKNESS (CM) - .. 3: THICKNESS (CM) - . 3 Z

SPECIMEN NO. - 1i0AC-E- T11T SPECIMEN NO. - MjAC-E- T23L SPECIMEN AO. - M5AC-E- T21L 0
-u-n

O STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIIE (HOUPS) STRAIN (PCT.) TIME (HOUPS) x
> m

M m
, .215 .1 .118 .1 .052 .1 r-
p .,37 .2 .022 .2 .065 .2 c Z

.53 7 .028 .3 .C92 .3
S.u77 ,5 .y34 .5 .112 .5

S100o .8 .,36 .8 .143 .8§.1 9 i, ,J40 .168 1.-
.5 .53 1.5 222 .5

.157 * .065 2, .Z 258 2.v ,S.179 *.. .369 3.0 342 3.

. 202 4*. .0 7 8  4,% .40i 4.-.
S23 C91 . .463

4 .313 1 . .119 1. .533
r .426 19.. 154 18. 598 7. i
all .4135 2,. .180 2 3.L ~r

.479 25, .2 5 25.2 rn
*5j 5  3 j. .225 3,0. "S.542 35. ,255 34. o
.593 43. .463 9.

14.* .483 95..498 103.0
.511 10
. 537 11 0
.5 7 125.

.587 -
S.595 138.0

b .629 145.
I o543

c,,



"UPREDICTION OF CREEP IN PHASE I NAS-1-11774

M" METALLIC TPS PANELS SUMMARY REPORT

APPENDIX D-3

Ti-6Al-4V CYCLIC CREEP TESTS

(RAW DATA)

Presented in this section are the results of the twelve cyclic tests performed

on tensile specimens.
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RPREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

Titanium Cyclic Creep Data

Cyclic Test Number 1
Alloy Designation Ti-6Al-4V
Heat Number N-0358

Supplier Timet

Test Temperature ( K) 658

Test Direction Longitudinal

Sheet Thickness (cm) 0.031 + 0.005

Specimen Number T25L T51L T60L

Specimen Thickness (cm) .0363 .0361 .0356
Specimen Width (cm) .8910 .8915 .8936
Applied Load (kg) 98.8 67.1 129.4

Test Stress (MPa) 299.2 207.0 399.0

Pressure(Pa) Constant (<1.3)

0O

3ide B

Cycle % Creep

Number T25L T51L T60L

1 Side A .05 .03 .09

Side B .05 .02 .09
Ave. .05 .025 .09

5 Side A .06 .04 .11

Side B .06 .03 .10
Ave. .06 .035 .105

15 Side A .10 .05 .16

Side B .10 .06 .17

Ave. .10 .055 .165

25 Side A .10 .05 .18

Side B .11 .06 .17

Ave. .105 .055 .175

50 Side A .12 .06 .21

Side B .11 .07 .19

Ave. .115 .065 .20

75 Side A .13 .08 .24

Side B .11 .07 .22

Ave. .12 .075 .23

100 Side A .13 .07 .26

Side B .14 .07 .24

Ave. .135 .07 .25
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PPREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Titanium Cyclic Creep Data

Cyclic Test Number 2
Alloy Designation Ti-6Al-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 714
Test Direction Longitudinal
Sheet Thickness (cm) .031 + .005
Specimen Number T31L T38L T39L
Specimen Thickness (cm) .0343 .0343 .0345
Specimen Width (cm) 1.2743 1.2753 1.2748
Applied Load (kg) 132.0 51.2 86.3
Test Stress (MPa) 295.9 114.6 192.0
Pressure (Pa) Constant (<1.3)

Side A

Side B

Cycle % Creep
Number T31L T38L T39L

1 Side A .110 .03 .05
Side B .100 .03 .05
Ave. .105 .03 .05

5 Side A .18 .05 .09
Side B .17 .05 .10
Ave. .175 .05 .095

15 Side A .27 .07 .14
Side B .27 .07 .15
Ave. .27 .07 .145

25 Side A .35 .08 .18
Side B .35 .09 .17
Ave. .35 .085 .175

50 Side A .49 .10 .23
Side B .50 .11 .25
Ave. .495 .105 .24

75 Side A .61 .13 .29
Side B .62 .14 .27
Ave. .615 .135 .28

100 Side A .74 .14 .31
Side B .73 .14 .33
Ave. .735 .14 .32
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" PREDICTION OF CREEP IN PHASE I NAS-1-11774
S ,METALLIC TPS PANELS SUMMARY REPORT

Cyclic Test Number 3
Alloy Designation Ti-6Al-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 783
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 + 0.005
Specimen Number T41L T56L T59L
Specimen Thickness (cm) .0343 .0343 .0345
Specimen Width (cm) 1.2753 1.2750 1.2750
Applied Load (kg) 57.9 22.5 37.6
Test Stress (MPa) 129.7 50.4 83.6

Pressure (Pa) Constant (<1.3)

Side A

Side B

Cycle % Creep
Number T41L T56L T59L

1 Side A .06 .02 .03
Side B .07 .02 .02
Ave. .065 .02 .025

5 Side A .20 .04 .14
Side B .21 .05 .11
Ave. .205 .045 .125

15 Side A
Side B
Ave.

25 Side A .51 .13 .30
Side B .53 .12 .37
Ave. .52 .125 .335

50 Side A .78 .21 .45
Side B .80 .21 .43
Ave. .79 .21 .44

75 Side A .98 .23 .57
Side B 1.02 .22 .55
Ave. 1.00 .225 .56

100 Side A 1.17 .26 .65
Side B 1.20 .26 .66
Ave. 1.185 .26 .655
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Titanium Cyclic Creep Data

Cyclic Test Number 4
Alloy Designation Ti-6Al-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 839
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 + 0.005
Specimen Number T64L T87L T89L
Specimen Thickness (cm) .0368 .0368 .0368
Specimen Width (cm) 1.2741 1.2720 1.2723
Applied Load (kg) 22.6 9.4 14.6
Test Stress 0Pa) 47.2 19.7 30.5
Pressure (Pa) Constant (<1.3)

Side A

Side B

Cycle % Creep
Number T64L T87L T89L

1 Side A .07 .02 .05
Side B .08 .02 .05
Ave. .075 .02 .05

5 Side A .20 .06 .12
Side B .18 .06 .11
Ave. .19 .06 .115

15 Side A .37 .10 .21
Side B .36 .08 .17
Ave. .365 .09 .19

25 Side A .57 .15 .30
Side B .56 .14 .28
Ave. .565 .145 .29

50 Side A 1.03 .23 .51
Side B 1.01 .24 .50
Ave. 1.02 .235 .505

75 Side A 1.45 .32 .73
Side B 1.38 .33 .67
Ave. 1.415 .325 .70

100 Side A 1.80 .41 .86
Side 'B 1.76 .39 .87
Ave. 1.78 .40 .865
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'tPREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Titanium

Cyclic Creep Data

Cyclic Test Number 5
Alloy Designation Ti-6A1-4V
Heat Number N-0358

Supplier Timet
Test Temperature (oK) 783
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 + 0.0051

Specimen Number T63L T66L T67L

Specimen Thickness (cm) .0345 .0343 .0345
Specimen Width (cm) 1.2751 1.2743 1.2748
Applied Load (See Table - Page D-3-6)
Test Stress (See Table - Page D-3-6)
Pressure (Pa) (Constant (<1.3)

Side A

Side B

Cycle % Creep
Number T63L T66L T67L

1 Side A .03 .03 .05
Side B .04 .02 .05
Ave. .035 .025 .05

5 Side A .07 .05 .10
Side B .07 .05 .10
Ave. .07 .05 .10

15 Side A .15 .09 .20
Side B .15 .10 .21
Ave. .15 .095 .205

25 Side A .23 .12 .30
Side B .23 .13 .30
Ave. .23 .125 .30

50 Side A .41 .23 .54
Side B .42 .22 .52
Ave. .415 .225 .53
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P;R'REDICTION OF CREEP IN PHASE I NAS-1-11774
I"- METALLIC TPS PANELS SUMMARY REPORT

TITANIUM TEST 5

SPECIMEN T63L SPECIMEN T67L SPECIMEN T66L

MEAN MEAN MEAN
LOAD STRESS LOAD STRESS LOAD STRESS

CYCLES (kg) (MPa) (kg) (MPa) (kg) (MPa)

1-5 29.8 66.2 36.4 80.9 21.4 48.1

7-8 31.2 69.4 39.3 87.4 21.8 48.9

9-12 32.8 72.9 41.1 92.3 23.2 51.9

13-17 34.4 76.6 43.3 96.3 24.8 55.7

18-22 36.3 80.7 45.5 101.2 26.1 58.6

23-27 37.8 84.1 47.5 105.7 27.7 62.2

28-32 39.3 87.3 49.6 110.4 29.0 64.9

33-37 41.0 91.3 51.5 114.5 30.5 68.5

38-42 42.8 95.1 53.9 119.8 31.6 70.8

43-47 44.5 98.9 55.9 124.2 33.3 74.6

48-50 46.3 102.9 57.7 137.3 35.0 78.5
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'PREDICTION OF CREEP IN PHASE I NAS-1-11774
' , METALLIC TPS PANELS SUMMARY REPORT

Titanium
Cyclic Creep Data

Cyclic Test Number 6
Alloy Designation Ti-6A-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 783
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 + 0.005
Specimen Number T68L T69L T78L
Specimen Thickness (cm) .0343 .0343 .0345
Specimen Width (cm) 1.2748 1.2741 1.2741
Applied Load (See Table - Page D-3-9)
Test Stress (See Table - Page D-3-9)
Pressure (Pa) (Constant <1.3)

Side A

Side B

Cycle % Creep
Number T68L T69L T78L

1 Side A .05 .05 .09
Side B .06 .05 .10
Ave. .055 .05 .095

5 Side A .14 .09 .18
Side B .13 .07 .19
Ave. .135 .08 .185

15 Side A .23 .14 .33
Side B .23 .12 .33
Ave. .23 .13 .33

25 Side A .29 .18 .41
Side B .31 .17 .43
Ave. .30 .175 .42

50 Side A .36 .22 .53
Side B .38 .21 .54
Ave. .37 .215 .535
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

TITANIUM TEST 6

SPECIMEN T68L SPECIMEN T78L SPECIMEN T69L

MEAN MEAN MEAN
LOAD STRESS. LOAD STRESS LOAD STRESS

CYCLES (kg). (MPa) (kg) (MPa (kg) (MPa)

1-2 46.7 104.7 58.2 129.6 33.8 75.9

3-7 45.1 100.9 56.8 126.5 31.9 71.6

8-13 43.0 96.4 54.1 120.6 31.3 70.2

14-17 41.0 91.9 51.6 114.9 30.9 69.3

18-22 39.0 87.4 49.5 110.2 29.8 66.9

23-27 37.4 83.9 47.4 105.6 28.7 64.4

28-32 35.7 80.0 45.4 101.2 27.3 61.3

33-37 34.0 76.2 43.2 96.2 26.1 58.6

38-44 32.3 72.4 41.0 91.2 24.9 55.8

45-47 30.5 68.4 39.4 87.7 23.2 52.1

48-50 28.9 64.7 37.1 82.7 22.1 49.5
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'PREDICTION OF CREEP IN PHASE I NAS-1-11774
-METALLIC TPS PANELS SUMMARY REPORT

Titanium

Cyclic Creep Data

Cyclic Test Number 7
Alloy Designation Ti-6A1-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 714
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 + 0.005
Specimen Number T32L T40L T61L
Specimen Thickness (cm) .0338 .0338 .0340
Specimen Width (cm) 1.2746 1.2748 1.2743
Applied Load (kg) 130.1 49.5 84.3
Test Stress (MPa) 296.0 112.6 190.4
Pressure (Pa) (Constant (<1.3)

Side A

Side B

Cycle % Creep
Number T32L T40L T61L

1 Side A .07 .02 .03
Side B .07 .02 .03
Ave. .07 .02 .03

5 Side A .11 .03 .05
Side B .13 .03 .05
Ave. .12 .03 .05

10 Side A .15 .03 .08
Side B .16 .03 .08
Ave. .155 .03 .08

30 Side A .23 .04 .09
Side B .22 .03 .10
Ave. .225 .035 .095

50 Side A .29 .06 .14
Side B .29 .07 .15
Ave. .29 .065 .145

100 Side A .37 .07 .18
Side B .37 .09 .19
Ave. .37 .08 .185
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Titanium
Cyclic Creep Data

Cyclic Test Number 8
Alloy Designation Ti-6A1-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 783
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 + 0.005
Specimen Number T28L T42L T70L
Specimen Thickness (cm) .0353 .0353 .0353
Specimen Width (cm) 1.2741 1.2748 1.2743
Applied Load (kg) (See Table - Page D-3-12)
Test Stress (MPa) (See Table - Page D-3-12)
Pressure (Pa) Constant (<1.3)

Side A

Side B

Cycle % Creep
Number T28L T42L T70L

1 Side A .07 .04 .07
Side B .05 .04 .09
Ave. .06 .04 .08

5 Side A .13 .08 .18
Side B .14 .10 .18
Ave. .135 .09 .18

15 Side A .23 .13 .30
Side B .23 .14 .29
Ave. .23 .135 .295

25 Side A .31 .19 .41
Side B .33 .18 .41
Ave. .32 .185 .41

50 Side A .49 .28 .55
Side B .51 .29 .65

Ave. .50 .285 .60

75 Side A .65 .37 .89
Side B .66 .34 .87
Ave. .655 .355 .88

100 Side A .79 .42 1.09
Side B .81 .42 1.07
Ave. .80 .42 1.08
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PREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

TITANIUM TEST NO.8

LOAD "- kg

1ST STEP 2ND STEP
(10 MINUTES) (10 MINUTES)

T28L 30.0 47.1

T42L 22.4 35.5

T7OL 39.7 60.6

STRESS ul MPa

1ST STEP 2ND STEP
SPECIMEN (10 MINUTES) (10 MINUTES)

T28L 65.4 102.6

T42L 48.8 77.3

T70L 86.4 132.0
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774

2,,METALLIC TPS PANELS SUMMARY REPORT

Titanium

Cyclic Creep Data

Cyclic Test Number 9

Alloy Designation Ti-6AI-4V

Heat Number N-0358

Supplier Timet
Test Temperature (OK) (See Table - Page D-3-15)
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 cm +0.005
Specimen Number T49L T53L T58L

Specimen Thickness (cm) .0351 .0351 1.0348

Specimen Width (cm) 1.2751 1.2748 1.2748

Applied Load (Kg) (See Table - Page D-3-15)

Test Stress (MPa) (See Table - Page D-3-15)
Pressure (Pa) (See Table - Page D-3-15)

Side A

Side B

Cycle % Creep
Number T49L T53L T58L

1 Side A .04 .02 .03

Side B .06 .02 .03

Ave. .05 .02 .03

5 Side A .08 .02 .05

Side B .07 .02 .04

Ave. .075 .02 .045

15 Side A .11 .03 .11

Side B .13 .03 .11

Ave. .12 .03 .11

25 Side A .15 .03 .08

Side B .17 .06 .09

Ave. .16 .045 .085

50 Side A .24 .05 .13

Side B .19 .06 .12
Ave. .215 .055 .125

75 Side A .29 .07 .15
Side B .29 .06 .15
Ave. .29 .065 .15

100 Side A .34 .07 .17
Side B .37 .07 .18
Ave. .355 .07 .175
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' OP REDICTION OF CREEP IN PHASE I NAS-1-11774

SMETALLIC TPS PANELS SUMMARY REPORT

% Creep
T49L T53L T58L

150 Side A .43 .08 .21
Side B .42 .11 .22
Ave. .425 .095 .225

200 Side A .50 .10 .26
Side B .54 .11 .26
Ave. .52 .105 .26
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"~rPREDICTION OF CREEP IN PHASE I NAS-1-11774
2' METALLIC TPS PANELS SUMMARY REPORT

TITANIUM TEST NO. 9

STRESS r MPa
CYCLE
CYCLE TEMP.(oK) PRESSURE

TIME (SEC.) Pa T49L T53L T58L

300 555 1.5 - -

400 674 2.4 21.1 6.1 13.1

500 741 4.0 31.6 12.4 24.1

600 766 5.2 49.7 16.6 31.3

700 781 6.4 53.5 19.4 35.7

800 782 7.2 61.3 21.6 39.1

900 778 8.3 63.5 22.6 40.5

1000 769 9.3 64.7 23.3 41.4

1100 764 10.4 69.2 25.2 44.4

1200 758 10.7 74.7 27.6 48.2

1300 750 12.5 85.0 31.9 55.2

1400 741 18.7 93.6 35.1 60.4

1500 733 33.3 104.6 40.3 68.8

1600 724 56.0 119.6 46.8 79.4

1700 669 77.3 128.0 50.1 86.0

1800 619 100.0 137.4 53.9 93.1

1900 578 126.6 146.0 57.0 99.4

2000 536 319.9 146.8 55.8 99.7

2100 500 693.2 137.5 49.7 92.1

2200 469 133.3 123.5 43.0 82.3

2300 440 41323 103.9 34.3 67.8

2400 422 101308 -72.1 21.4 46.3

2500 400 101308 43.9 11.5 27.8
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/-1. PHASE I NAS-1-11774
',4PREDICTION OF CREEP IN

METALLIC TPS PANELS SUMMARY REPORT

Titanium
Cyclic Creep Data

Cyclic Test Number 10
Alloy Designation Ti-6A1-4V
Heat Number N-0358
Supplier Timet
Test Temperature (OK) 783
Test Direction Longitudinal

Sheet Thickness (cm) 0.031 cm +0.005

Specimen Number T73L T75L T80L
Specimen Thickness (cm) .0353 .0356 .0356

Specimen Width (cm) 1.2743 1.3743 1.2748

Applied Load (Kg) (See Table - Page D-3-17)

Test Stress (MPa) (See Table - Page D-3-17)

Pressure .Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep

Number T73L T75L T80L

1 Side A .09 .03 .05
Side B .10 .02 .05
Ave. .095 .025 .05

5 Side A .15 .03 .08
Side B .15 .03 .09
Ave. .15 .03 .085

15 Side A .25 .06 .13
Side B .25 .06 .14
Ave. .25 .06 .135

25 Side A .31 .07 .17
Side B .33 .06 .15
Ave. .32 .065 .16

50 Side A .49 .10 .24
Side B .47 .09 .24
Ave. .48 .095 .24

75 Side A .61 .11 .29
Side B .65 .13 .30
Ave. .63 .12 .295

100 Side A .72 .13 .34
Side B .76 .14 .35
Ave. .74 .135 .345
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'-PREDICTION OF CREEP IN PHASE I NAS-1-11774
l ,METALLIC TPS PANELS SUMMARY REPORT

TITANIUM TEST NO. .10

LOAD ,- Kg

1ST STEP 2ND STEP 3RD STEP 4TH STEP
(10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

T73L 18.0 34.6 57.5 67.2

T80L 10.5 21.11t 37.41 43.3

T75L 5.6 12.2 22.8 25.1

STRESS % MPa

1ST STEP 2ND STEP 3RD STEP 4TH STEPSPECIMEN
(10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

T73L 39.2 75.4 125.3 146.3

T80L 22.7 45.7 80.9 93.6

T75L 12.2 26.3 49.3 54.1
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RPREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

Titanium
Cyclic Creep Data

Cyclic Test Number 11
Alloy Designation Ti-6Al-4V
Heat Number N-0358
Supplier Timet
Test Temperature (oK) 783
Test Direction Longitudinal
Sheet Thickness (cm) 0.031 cm +0.005
Specimen Number T29L T45L T46L
Specimen Thickness (cm) .0348 .0348 .0348
Specimen Width (cm) 1.2751 1.2753 1.2751
Applied Load (Kg) (See Table - Page D-3-19)
Test Stress (MPa) (See Table - Page D-3-19)
Pressure (Pa) (See Table - Page D-3-15)

Side A

0 O

Side B

Cycle % Creep
Number T29L T45L T46L

1 Side A .08 .01 .04
Side B .08 .02 .04
Ave. .08 .015 .04

5 Side A .15 .02 .06
Side B .16 .04 .08
Ave. .155 .03 .07

15 Side A .25 .04 .12
Side B .25 .05 .12
Ave. .25 .045 .12

25 Side A .31 .05 .15
Side B .30 .07 .15
Ave. .305 .06 .15

50 Side A .47 .09 .22
Side B .45 .10 .23
Ave. .46 .095 .225

75 Side A .60 .11 .27
Side B .59 .12 .29
Ave. .595 .115 .28

100 Side A .71 .11 .34
Side B .71 .13 .34
Ave. .71 .12 .34
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'rPREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS. SUMMARY REPORT

TITANIUM TEST NO. 11

LOAD , Kg

SPECIMEN IST STEP 2ND STEP 3RD STEP 4TH STEP
(10 MINUTES) (10 MINUTES) (5 MINUTES) (10 MINUTES)

T29L 17.4 34.0 57.4 66.2

T46L 10.3 20.3 36.2 41.2

T45L 5.2 11.7 22.2 24.3

STRESS u MPa

1ST STEP 2ND STEP 3RD STEP 4TH STEP
SPECIMEN (10 MINUTES) (10 MINTUES) (5 MINUTES (10 MINUTES)

T29L 38.5 75.0 126. 6 146.1

T46L 22.6 45.4 80.0 90.9
T45L 11.5 25.9 49.1 53.6
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7PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

APPENDIX E-1

RENE' 41 LITERATURE SURVEY CREEP DATA

E-1-1
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OLLOY -- ENE 41 ALLOY - RCNE 41
STRESS (MPg) - STRESS (MPA) - 72.4 STRESS (MPA) - 79.3 >

TEMP. (KELVIN) - 1:33 TEMP. (KELVIN) - 1033 TEMP. (KELVIN) - 1,33
THICKNESS (CM) - .32 THICKNESS (CM) - .2 THICKNESS (CM) - . O

SOURCE - HF-M AC-2 SOURCE - HF-MDAC-2 SOURCE - HF-MDAC-?5 0 z
0 O

P STPAIN (PCT.) TIME (fOURS) STP8IN (PCT.) TIME (PCURPS) STRAIN (PCT.) TIME (POURS) o
> m

z 0? 43 .0:: .056 .03. mm
M 56 ... 37 <.00 *102 5.•74 0 -
• 65 10i .095 10.000 .159 .0,C
.081 . .121 20. CJ .229 2.C6-
.091 I. .131 33.00 .268 30.0',

S.094 45C .141 40.0C' .300 4C.CC
• 797 5?. L. .154 5,.30 .319 50.OC
.10 6l .160 0 ,.,- .334 60.303
.104 7 .168 74.CO 340 70.
.104 60. 00 .178 8. 0 .346 80.0-
.108 91.0 .188 90.30 .356
.113 101 o.J .194 110.30 .364 101. I

ol.116 110.: .202 113.0 0 .365 110 .31
.126 120.3, .216 120.00 *,371 120.' a0 _

O .133 13 .0:- .224 1330,2 .377 130. Or m
.134 140.303 .230 14r0.30 .383 1403. CI m

b .137 1 a .01. .243 1F3.)*C .391 150.00 -C-
e .143 161.000 .251 16i.0% .396 161.30 c

.146 171.00% .259 170.3% .404 180.00 a

.14,7 181.C .267 18S.00 .*412 190.000

.150 191. C .281 190. 00 *422 20. .0

.155 200.00 .287 20 .0O0

now z

s-a



ALLOY - N 41 ALLOY - NE 41 ALLOY - N_ I
STRESS (MPA) .7 STAE ( ) - STRESS (MPA) - 5

TEMP. (KELVIN) - 1144 TEMP, (KELVIN) - 1Yt TEMP. (KELVIN) - I 14,
THICKNESS (CM) - ,2 THICKNESS (CM) - . 2 THICKNESS (CM) - 2SOURCE - HF-MrAC- SOURC - HE-ADAC-1 SORC - H.- MDAC-9

STRAIN TPCT.) TT-E (OU'P) STRAIN (PCT.) TIT'E (1FOiOS) STRAIN (PCT.) TIME (FOUfS) O0
" -- O

o .)41 6 .42 C.9 5 -a -n
.063 5. VC .068 , J90 i ~

..091 1 . .083 0.0 .136 2 •.00o .128 0r .115 r; .171 m
* 152 'IV 1. 150 0. .214 4 rn -
.182 41,1 , .196 4. .258 -

,217 241 5 .• .299 63•
* 47 .. 282 C. .345 7.
* 282 7. 328 71 .396

0 .314 8.• .38U 8L. .446 9
*34 30. 44 .43C 9 .2 .507 lco.c".. 381 1 -  .. *491 99, .573 1 .
.407 11 .557 511 .643 12.c0.444 12..0o .635 120, .722 130 .
483 i•. C .729 129. .818l ".It 518 14,j e< .819 140. .923 1 -.

1 .55? 1.. 921 149 .0 1.042 16.02a C .589 1 . 1. 31 35 19-00 1'<
1 .626 1lA rnC

.665 183. " ALLOY - ENE 41 m

.704 193.02 STRESS (MPA) - 1 .3 -
S.752 2*5. C- TEMP. (KELVIN) 125

THICKNESS (CM) - .020
ALLOY - PENE 41 ALLOY - RENE 41 SOURCE - HF-MlIC-1

STRESS (MPA) - 58. STRESS (MPA) *- 65.
TEMP. (KELVIN) - 1144 TEMP, (KELVIN) - 1144
THICKNESS (CM) - .23 THICKNESS (CM) - . 2; STRAIN (PCT.) TIME (HOU'S)

SOURCE - HF-MPAC-12 SOUPRC = - HF-MDAC-15

STRAIN (PCT.) TIME (-OURS) STRAIN (PCT.) TIME ()0Ot'S) .020 .
.*29 1
.150 2 .3,

.041 2 .046 2. .083 3 .0
b .68 5. .079 5 000 .118 4. n'
S.385 .1. 116 1.0 .159 5 •O0

*127 20 .00? .181 2.. 207 6 r
.177 r . 00 .238 3 • a .253 7 .c0.219 4 2 . 308P, 4 . , 301 8 •. n, z
.?75 5 389 F'" .347 . G
,324 F.. .481 ;0:.' .393 1 0., r '
.387 71.,3 .588 73. .43
.435 83. .15 8.7. .489.497 o0. - .877 9 .0' .535 13. .r
.565 130,l 1.,88 .578 14 . '

.633 1 . i•526 14 . r

.707 12 .676 1

.797 .718 17,.

.889 143. .", .76f8 1 .



ALLOY - 0NF (1 ALLOY - PENE 41 ALLOY - P1NE 41 m 0
STRESS (MPA) - . STRESS (MPA) - 13.8 STRESS (MPA) - 17.2 > 0

TEMP. (KELVIN) - 1?E TEMP. (KELVIN) - 255 TEMP. (KELVIN) - 125 r
THICKNESS (CM) - .&2 THICKNESS (CM) - .020 THICKNESS (CM) - 20 O

SOURCE - HF-MOAI,-4 SOURCE - HF-MDACr-:~ SOURCE - H-MAr-5 C z
- O

STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (FOULS)

Z m.342 ,•t .042 3.0 .061 .• , m -
l.81 5.•r; .084 7.000 .120 7."
.141 .112 1o.00 .15 i.. Z
.257 2 .- • .182 20.OZ *251 :.
.341 228 30 356 30.0
.429 40.01 .274 41. 00 .479 430~.
.504 5 .322 50.0 615
.579q • .370 63.o0C .771 6
.549 7•" .429 70. O .927 7 :
.719 .494 800 1.111
.790 9.~ .569 93.002 1.309 92.o0
.854 1i'.*' .646 100.000 1.513 990
A.922 1 C .731 1 0.0
.986 123 ' .814 120.0 18

1.052 1 .906 130.: m
1.109 14 : .992 140.OC m

1.091 150.060
1.185 160.0030

ALLOY - 9ENE 41 -
STRESS (MPA) - 17.2

TEMP. (KELVIN) - 1255
THICKNESS (CM) - .

SOURCE - WHCAC-5

STRAIN (DCT.) TTME (OUPS)

.- 71 72.
,9g5 5. :
.130 .0
.221 20.0 "

.322 37,

.439 4.0 z

.569 5Jc

.713 6

.867 7 1
1.031 80.0 -a
1.205 t9.
1.379 go.000



REDICTION OF CREEP IN PHASE I NAS-1-11774
V 50METALLIC TPS PANELS SUMMARY REPORT

APPENDIX E-2

RENE' 41 SUPPLEMENTAL STEADY-STATE CREEP TESTS (RAW DATA)

This portion of Appendix E presents the results of the supplemental steady-
state creep tests. All strains shown are total plastic strains. For informational
purposes the elastic strains are presented below for the indivisual tests in order
of their appearance in this section. Elastic strain "A" was measured at the start
of the test while elastic strain "B" was measured at the conclusion of the test.

SPECIMEN # ELASTIC STRAIN, %

-A B

R01L .147 .128
R02L .034 .053
R03L .078 .055
R11T .026 .098
R12T .036 .020
R13T .050 .043
R21L .061 .054
R22L .100 .106
R23L .029 .031
R24L .025 .039
R25L .058 .037
R26L .016 .018'
R27L .082 .081
R28L .021 .037
R29L .079
R30L .044 .036
R31L .088 .068
R104L .104 .117
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ALLOY - RENE 41 ALLOY - RENE 41 ALLOY - RENE 41 rO
STRESS (MPA) - 68,9 STRESS (MPA) - 121.3 STRESS (MPA) - 3405 8 Z

TEMP. (KELVIN) - 964 TEMP. (KELVIN) - 983 TEMP. (KELVIN) - 1061 - 0
THICKNESS (CM) - .'25 THICKNESS (CM) - .u25 THICKNESS (CM) - .025 -n
SSPECIMEN NO. - R25L SPECIMEN NO. - P27L SPECIMEN NO. - 6Leo M

> Zm
STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) m

* .015 .1 .008 .1 .303 .1
.016 .2 .009 .2 .003 .2

0 .318 .3 .0J8 .3 .004 .3C .019 .5 .009 .5 .009 .5
O .022 .8 .011 .8 .010 .8

.021 1.0 .011 1.0 .011 1..322 1.5 .013 i.5 .u12 1.5

.021 2.0 .015 2.0 .013 2.V.023 3. .016 3.0 .016 3.0(A.023 4.0 .015 4. .020 4.0
*023 5.1 .018 5.c .024 5.0S021 10. C .023 10,0 .032 10.0.010 41.1 .025 14.J .642 14.0.009 45e. .021 22.0 .032 21.0 --
.05 5,.. .025 25.0 .028 25.1
.08 55.L .023 3..o .025 30.0
.08 5 8 .* .028 35 . .037 35.0
.010 65.0 .032 38.0 .025 38.0
.006 7L. .021 46.0 .024 45.
.002 75.. .016 50,0 .0G23 5 .
*l001 8 59i .225 55.3 .025 55.C
. 00 82.C .023 6Z. .036 6u.0
.037 137., .020 7.*L .020 7L.
.009 14.; .025 75.0 .031 75.G
*008 145.0 .019 8L.0 .031 8..1i .006 15.GL .019 85. .034 85. L

F .007 154. . .021 142. 0 .29 93. ,
161.1; .321 145. ' .027 95.0

.009 165. i5u*15 .028 100,.

.008 170. .033 105.
00 .08 175.0 .29 11i.c
.*009 178.0 .J25 165. ;*009 185.3 .03L 17u#.>
*oi0 19j. .145 175.0
.309 195. .055 181;.6 --

009 20j.0 .028 189.0
2010 209. C .029 195.,

.343 2-3.W -i
,.



ALLOY - RENE 41 ALLOY - RENE 41 ALLOY- RENE 41 A - 689
STRESS (HPA) 68.9 STRESS (MPA) - 689 STRESS (MPA) - 68.9 K z

TEMP. (KELVIN) - 1661 TEMP. (KELVIN) - 61ELVIN) 1061 - 0
THICKNESS (CM) - .25 THICKNESS (CM) - .025 THICKNESS (CM) - .025 Q

SPECIMEN NO. - R30L SPECIMEN NO. R24L SPECIMEN NO. Ri2mT

Z m
,STRAIN (PCT.) TIME (HOUS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) m m

.003 .1 .005 .1 .304 .1

.003 .2 .006 .2 .08 .2
o .3 3 .3 .009 .3 .012 .3

S.Ci12 .5 .010 .5 .013 .5
3 .17 .8 .010 .8 .014 .8

*024 1.3 .009 .017 1.0
.032 1.5 .0 1.5 .017 1.5 c
.034 2,C .012 2.0 .G18 2. m
.025 3.6 .013 3.0 .023 3.L
.020 4.0 .013 4.J .020 4.0
.021 5.1 .015 5.0 022 5.0

005 12*1; .022 . *041 13.0 m ,,S.012 17.0 .021 12.0 .043 13. m,
.022 22.0 .032 43.0 .034 21.0
.024 27.0 .029 45.0 .039 25. 0
.326 29.0 .032 5U.0 .042 30.0 4.011 36.; .u34 55.i .051 35.
.014 41.0 .032 60.0 .049 45.0
.039 46.0 .031 67.0 .057 50.0
.035 51.0 .032 7.0 .061 55.0
.028 53.0 .036 75.0 .062 60.
.000 60.3 .039 80.0 .092 117.
.010 65.3 .042 84. .096 123.0
.816 70.0 .057 139, .096 125.0
.021 75.0 .062 145.0 .95 130.0

0 .030 80.0 .067 150.0 .107 133.0
.028 88.5 .064 155. .110 141.u

b .031 93.5 .071 - 163.0 .112 145.
* - .032 96.5 .O07 165, .3i 150.0

0 .049 152.0 .070 170.0 .121 155.0
.057 155.0 .071 175.0 .126 165. z

.075 183.0 .134 170.3 >

.0379 187.0 .132 175.0

.083 19.u .141 180.0

.088 195. .147 189.0

.091 200,0 .146 195.0
.149 200.G



ALLOY - RENE 41 ALLOY - RENE 41 rO
ALLOY - RENE 41 STRESS (MPA) - 137.9 STRESS (MPA) - 68.9 z

- STRESS (MFA)- 68.9 TEMP. (KELVIN) - 161 TEMP. (KELVIN) - 1111 -
TEMP .(KELVIN) - 161 THICKNESS (CM) - .025 THICKNESS (CM) - .325 -
THICKNESS (CM) -,S3 SPECIMEN NO. - 134L SPECIMEN NO. - R28L, -

O -SPECIPEN NO. - MOAC-E-(2L m
Zm

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) m -
M STRAIN (PCT.) TIME (HOURS) Clz

.012 .1 .003 .1
.002 .3 .017 .2 .012 .2

O .005 J7 .022 .3 .017 .3
.008 .25) .J23 .5 *021 .5
.009 .5" .041 .8 .023 .8
.009 *750 .041 .1 0 27 10 oo
.11 .041 1. .035 1.5
.016 1.5L0 a343 - 1.5 w4 2.,

b .019 2.0C .047 2.0 054 3.0 r
m .019 3.00 .~ 42 3.0 056 4.0

o028 4.0 3 .358 4,U .057 5.0
o . .032 5.0 058 5, .072 liuC _o

. 39 19.0A .057 7.5 .089 15. n

.076 66.00 .080 15.0 .114 23.0
C .071 70*05 .090 2 0. .141 25.0

.081 75.O) .691 25. .155 30.0
o .092 09010J ."92 3u. *184 35.0

.091 62.5P0 .274 87.0 .184 39.0

.104 9D.030 *285 90.0 .200 47.
98 95.00 .291 95.0 .220 SG.C

.92 1 0 a 03 0313 100.0 o225 55.0
V.101 S *235 60.0

w .102 115.00 .239 63.5
.108 120.00 .374 129.u
.129 125.0,0 .380 13..0
.131 130.0>)
.126 138. 0'J
.128 145.030

U .129 150.0C0c
.128 154.010
*14 162.0 0
.138 155.0 >
.143 1c0.0C
.160 177.00I
.183 214.520
.186 234.0)3
.201 2?6.104

Ph



m

r-O

ALLOY - RENE 41 ALLOY - RENE 41 ALLOY - RENE 41 F 2
STRESS (MPA) - 68.9 STRESS (MPA) 68.9 STRESS (MPA) - 103.4 -1 0

TEMP. (KELVIN) 1111 TEMP. (KELVIN) - iii TEMP. (KELVIN) - 1111 -n
THICKNESS (CM) - .25 THICKNESS (CM) - .63 THICKNESS (CM) - .25

SSPECIMEN NO. - R13T SPECIMEN NO. - MDAC-E-R3L SPECIMEN NO. - R29L> m

i my
STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) 

0 .010 .1 .* 1 5 .083 .010 .1
O .015 .2 0925 .170 .020 .2
C .017 .3 .027 .250 .029 .3

..018 .5 .037 .5 3 .041 .5
:e .022 .8 .053 .750 .048 .8

b .026 1.0 .058 1.010 .050 1.
.032 1.5 .r58 1.50 .053 1.5
0 39 2.0 .369 2. 01 .053 2.

1 .048 3.0 .C88 3.000 .064 3.0
.055 4.G .112 4.0 3 .068 4.0

§ .062 5. .123 5.0 01 .072 5.0
.088 10.0 *168 10.000 .092 10.
. 130 17. 195 14D10 .19c 18.

e .149 26.0 .277 21.0'0 .200 20.8
S176 25., .313 25. 0 0 .240 25. 0

.199 3C.0 .349 30.00 .256 30.,

.213 34. C .387 35.0 .269 34.0

.258 41. 0 .402 38.0.0 .599 94.5

.275 45. .489 45.C0

.289 5j.0 .542 .0

.312 55.u .589 55.0cJ0

.325 58.0 .611 60.0 0
0 .372 65.C .735 7..

.403 70.

.411 75.0

.466 8 9 . ;
W .486 950

.512 i.

z

",



ALLOY - RENE 41 ALLOY - RENE 41 ALLOY - RENE 41STRESS (MPA) - 39.3 STRESS (MPA) - 55.2 STRESS (MPA) - 121.3
TEMP. (KELVIN) - 1155 TEMP. (KELVIN) - 1155 TEMP. (KELVIN) - 1155THICKNESS (CM) - .25 THICKNESS (CM) - .025 THICKNESS (CM) - .25-SPECIMEN NO. - R23L SPECIMEN NO. - R31L SPECIMEN NO. - P22L

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

r-
.C13 31 .309 .1 .055 .1 0
.016 .2 .014 .2 .071 .2 -nS018 .3 .018 .3 086 .3.022 .5 . 28 .5 .114 .5
.25 .8 .030 .8 .165 .8 >..32 1.0 .033 1.0 .173 Z m.038 1.5 .037 1.5 .209 1.5 m-

S.041 2* .048 2.C .252 2.06P .050 3.0 . 80 3.0 .324 3.0.059 4.L .076 4.0 .406 4.S 056 5.0 .086 5. .491 5.0e .152 15.u .180 12.5 1.675 15.0.182 2.j .196 15.5
p .205 25.0 .24 18.5

.227 3 ,.uj .260 21.Z

.274 4 .0 .299 26.0

.312 45.0 .337 29.'

.352 5o. E .805 85. 0.361 55. =

.6J2 111.^

.664 115.0

.695 1203.0

.733 1 25 . C
e768 13 5.0 ALLOY - RENE 41.788 14,. STRESS (MPA) - 121.3 ALLOY - RENE 41.827 145. TEMP. (KELVIN) - 1155 STRESS (MPA) - 68.9.847 15L.0 THICKNESS (CM) - .025 TEMP. (KELVIN) - 1183.892 15 9 .u SPECIMEN NO. - R11T THICKNESS (CM) - 025

SPECIMEN NO. - R21L
ALLOY - RENE 41 STRAIN (PCT.) TIME (HOURS)

STRESS (MPA) - 121.3 STRAIN (PCT.) TIME (HOURS)TEPFP (KELVIN) - 1151
THICKNESS (CM) - . 031 .1

SPECIMEN NO. - DAC-E- RiL .044 .2 .U21 .1
0055 .3 .042 .2
o o086 .5 .065 93STRAIN (PCT.) TIME (HOURS) 10C6 .8 .075 .5
o133 1. .094 .8
.220 2.0 .095 e 0 Z9034 .'3 o329 3.3 .125 1.5 >

. .. 394 4.0 .15k 2.0*093 .5 3 .483 5.0 .194 3.0.200 .753 .573 6 .u .240 4.0*241 1. J 0681 7.0 .246 5,3.366 1. 0 .799 8.0 .808 15. 0*459 2. 0 .911 9.0 837 16.*558 2.5" 1.040 1. .890 17 .6 3.0 151 11. .948 18.0



'tPREDICTION OF CREEP IN PHASE I NAS-1-11774
M NETALLIC TPS PANELS SUMMARY REPORT

APPENDIX E-3

RENE' 41 CYCLIC CREEP TESTS

(RAW DATA)

This section presents the results of the 15 cyclic creep tests that were

performed on Rene' 41 tensile specimens.
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P"REDICTION OF CREEP IN PHASE I NAS-1-11774
2; METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 1
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (OK) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R40L R41L R39L
Specimen Thickness (cm) 0.02768 0.02768 0.02768
Specimen Width (cm) 1.2722 1.2725 1.2730
Applied Load (kg) 14.0 24.7 37.5
Test Stress (MPa) 39.0 68.7 104.1

Side A

Side B 11

Cycle % Creep
Number R40L R41L R39L

1 Side A -.02 -.01 .00
Side B -.02 -.02 .01
Ave. -.02 -.015 .005

5 Side A -.01 .0 .01
Side B -.01 -.01 .04
Ave. -.01 -.005 .025

15 Side A -.01 .02 .08
Side B .01 .03 .08
Ave. .0 .025 .08

25 Side A -.01 .05 .10
Side B .02 .05 .11
Ave. .005 .05 .105

50 Side A .02 .08 .17
Side B .02 ,07 .21
Ave. .02 .075 .19

75 Side A .03 .12 .28
Side B .04 .11 .29
Ave. .035 .115 .285

100 Side A .03 .18 .41
Side B .05 .16 .43
Ave. .04 .17 .42
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
1 , METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 2
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (oK) 1155
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R37L R36L R38L
Specimen Thickness (cm) 0.0274 0.0274 0.0274
Specimen Width (cm) 1.2733 1.2740 1.2730
Applied Load (kg) 16.7 20.3 23.7
Test Stress (MPa) 46.7 57.0 66.5

Side A

Side B

Cycle % Creep
Number R37L R36L R38L

1 Side A .01 .01 .00
Side B .00 .00 .01
Ave. .005 .005 .005

5 Side A .02 .05 .06
Side B .03 .04 .06
Ave. .025 .045 .06

15 Side A .06 .11 .11
Side B .08 .09 .15
Ave. .07 .10 .13

25 Side A .08 .17 .21
Side B .14 .17 .24
Ave. .11 .17 .225

50 Side A .19 .29 .43
Side B .22 .30 .43
Ave. .205 .295 .43

75 Side A .26 .43 .52
Side B .31 .43 .63
Ave. .285 .43 .575

100 Side A .38 .55 .81
Side B .41 .58 .89
Ave. .395 .565 .85
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 3
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (OK) 1071
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R43L R42L R46L
Specimen Thickness (cm) 0.0274 0.0274 0.0274
Specimen Width (cm) 1.2750 1.2743 1.2758
Applied Load (kg) 24.5 36.9 48.3
Test Stress (MPa) 68.7 103.4 135.1

Side A

O O

/ Side B

Cycle % Creep
Number R43L R42L R46L

1 Side A -.02 -.02 .01
Side B -.03 -.01 .02
Ave. -.025 -.015 .015

5 Side A -.02 -.02 .03
Side B -.01 .00 .03
ve. -.015 -.01 .03

15 Side A -.02 -.01 .06
Side B -.01 .01 .07
Ave. -.015 .00 .065

25 Side A .00 .02 .09
Side B -.01 .05 .09
Ave. -.005 .035 .09

50 Side A .01 .05 .13
Side B .01 .05 .14
Ave. .01 .05 .135

75 Side A .02 .08 .18
Side B .03 .09 .19
Ave. .025 .085 .185

100 Side A .03 .10 .23
Side B .03 .10 .26
Ave. .03 .10 .245
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!EDICTION OF CREEP IN PHASE I NAS-1-11774
" METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 4
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne
Test Temperature (OK) 1031
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R53L R52L R54L
Specimen Thickness(cm) 0.0272 0.0274 0.0272
Specimen Width (cm) 1.2769 1.2773 1.2766
Applied Load (kg) 50.3 74.2 97.6
Test Stress (MPa) 142.0 207.6 275.5

Side A

Side B

Cycle % Creep
Number R53L R52L R54L

1 Side A -. 02 -.02 .01

Side B -.03 .01 .02
Ave. -. 025 -.005 .015

5 Side A -.01 .01 .05
Side B -.01 .01 .03

Ave. -.01 .01 .04

15 Side A .01 .03 .07
Side B .00 .03 .07
Ave. .005 .03 .07

25 Side A .01 .05 .11

Side B .01 .05 .09
Ave. .01 .05 .10

50 Side A .02 .05 .15
Side B .02 .10 .15
Ave. .02 .075 .15

75 Side A .03 .08 .21

Side B .04 .12 .22
Ave. .035 .10 .215

100 Side A .05 .10 .26
Side B .06 .14 .25

Ave. .055 .12 .255
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'PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number
Alloy Designation Rene '41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (OK) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R48L R47L R51L
Specimen Thickness (cm) 0.0274 0.0274 0.0272
Specimen Width (cm) 1.2764 1.2766 1.2769
Applied Load (Page E-3-7)
Test Stress (Page E-3-7)

Side A

Side B

Cycle
Number % Creep

R48L R47L R51L
1 Side A .00 -.01 .00

Side B .02 .01 .01
Ave. .01 .00 .005

5 Side A .01 .03 .02
Side B .03 .03 .04
Ave. .02 .03 .03

15 Side A .01 .04 .06
Side B .05 .05 .07
Ave. .03 .045 .065

25 Side A .05 .09 .16
Side B .07 .11 .17
Ave. .06 .10 .165

50 Side A .10 .20 .35
Side B .11 .23 .35
Ave. .105 .215 .35

75 Side A .10 .23 .47
Side B .15 .27 .45
Ave. .125 .25 .46

100 Side A .13 .29 .58
Side B .17 .31 .57
Ave. .15 .30 .575
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"PREDICTION OF CREEP IN PHASE I NAS-1-11774
J" METALLIC TPS PANELS SUMMARY REPORT

Rene '41 Test 5

SPECIMEN R48L SPECIMEN R47L SPECIMEN R51L

MEAN MEAN MEAN
LOAD STRESS LOAD STRESS LOAD STRESS

CYCLES (kg) (MPa) (kg) (MPa) (kg) (MPa)

1-15 18.5 52.1 25.1 70.6 36.1 101.4

16-50 24.7 69.4 36.3 102.2 48.5 136.4

51-100 18.7 52.7 28.2 79.4 36.9 103.8
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
SMETALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 6
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (OK) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R59L R58L R60L
Specimen Thickness (cm) 0.0271 0.0271 0.0271
Specimen Width (cm) 1.2768 1.2766 1.2768
Applied Load (See Table - Page E-3-9)
Test Stress (See Table - Page E-3-9)

Side A

Side B

Cycle % Creep
Number R59L R58L R60L

1 Side A -. 03 -.01 -.01
Side B -. 02 -.01 .01
Ave. -.025 -. 01 .00

5 Side A -. 03 .01 .01
Side B -.01 .02 .02
Ave. -.02 .015 .015

15 Side A -.02 .02 .03
Side B .01 .03 .05
Ave. -.005 .015 .04

25 Side A -.02 .02 .06
Side B .01 .07 .07
Ave. -. 005 .045 .065

50 Side A .02 .05 .15
Side B .02 .14 .17
Ave. .02 .095 .16

75 Side A .06 .14 .26
Side B .06 .23 .30
Ave. .06 .185 .28

100 Side A .09 .26 .44
Side B .11 .30 .46
Ave. .10 .28 .45
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'TPREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Rene' 41 Test 6

SPECIMEN R59L SPECIMEN R58L SPECIMEN R60L

Mean Mean Mean
Load Stress Load Stress Load Stress

Cyles (kp; Ma) (kg) (a)(kg) (a)

1-5 12.0 33.8 19.4 54.7 23.9 67.2

6-15 13.7 38.5 21.3 60.0 26.4 74.3

16-25 15.2 42.9 22.9 64.4 29.2 82.0

26-35 16.6 46.7 24.0 67.4 32.6 91.8

36-45 18.8 53.0 25.8 72.5 34.4 96.8

46-55 19.0 53.6 27.6 77.6 35.7 100.3

56-55 19.8 55.6 30.3 85.4 38.5 108.1

66-75 20.8 58.5 31.3 88.0 41.5 116.7

76-86 22.4 63.0 32.3 90.9 43.9 123.5

87-95 23.5 66.2 34.7 97.6 46.0 129.5

96-100 25.3 71.1 36.3 102.1 48.1 135.4
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' PRTEDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 7

Alloy Designation Rene '41

Heat Number 2490-0-8207

Supplier Teledyne Rodney

Test Temperature (OK) 1111

Test Direction Longitudinal

Sheet Thickness (cm) 0.025 + 0.003

Specimen Number R62L R61L R63L

Specimen Thickness (cm) 0.0272 0.0274 0.0274

Specimen Width (cm) 1.2756 1.2758 1.2756

Applied Load (See Table - Page E-3-11 )

Test Stress (See Table - Page E-3-11)
Side A

Side B

Cycle % Creep

Number R62L R61L R63L

1 Side A -.01 .00 ,00

Side B -.01 .01 .03

Ave. -.01 .005 .015

5 Side A .00 .04 .04
Side B .02 .03 .07

Ave. .01 .035 .055

15 Side A .01 .07 .10

Side B .05 .09 .14

Ave. .03 .08 .12

25 Side A .05 .08 .15

Side B .05 .11 .18

Ave. .05 .095 .165

50 Side A .06 .14 .25

Side B .07 .18 .29

Ave. .065 .16 .27

75 Side A .09 .18 .31

Side B .07 .18 .37

Ave. .08 .18 .34

100 Side A .10 .21 .37

Side B .11 .25 .41

Ave. .105 .23 .39
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
4 'METALLIC TPS PANELS SUMMARY REPORT

Rene' 41 Test 7

SPECIMEN R62L SPECIMEN R61L SPECIMEN R63L
Mean Mean Mean
Load Stress Load Stress Load Stress

Cycles (kg) (MPa) (kg) (MPa) (kg) (MPa)

0-5 25.1 70.6 37.3 104.7 47.6 134.0

6-15 23.4 65.9 35.0 98.4 46.3 130.2

16-25 22.3 62.7 32.6 91.6 43.8 123.1

26-35 21.0 59.2 31.1 87.4 41.4 116.5

36-45 20.3 57.1 29.0 81.6 38.7 108.9

46-55 18.8 52.7 27.2 76.4 36.7 103.3

56-65 17.9 50.3 25.5 72.2 33.4 94.0

66-75 16.8 47.2 23.4 65.9 31.3 88.0

76-85 15.1 42.4 22.0 61.8 28.7 80.7

86-95 13.6 38.2 20.0 56.2, 26.6 74.7

96-100 12.5 35.2 18.2 51.2 24.3 68.4
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"PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel Cyclic Creep Data

Cyclic Test Number 8
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne
Test Temperature (OK) 1155
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 cm +0.003
Specimen Number R65L R64L R66L
Specimen Thickness (cm) 0.0274 0.0274 0.0274
Specimen Width (cm) 1.2755 1.2760 1.2755
Applied Load (kg) 16.2 20.7 24.6
Test Stress (MPa) 49.1 62.6 74.9

Side A

Side B

Cycle % Creep
Number R65L R64L R66L

2 Side A -.01 .01 .00
Side B .01 .03 .06
Ave. .00 .02 .03

10 Side A .02 .06 .06
Side B .05 .06 .06
Ave. .035 .06 .06

30 Side A .06 .14 .19
Side B .09 .18 .14
Ave. .075 .16 .165

50 Side A .09 .18 .27
Side B .16 .25 .21
Ave. .125 .215 .24

100 Side A .19 .41 .48
Side B .27 .43 .48
Ave. .23 .42 .48
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" P REDICTION OF CREEP IN PHASE I NAS-1-11774
r~- METALLIC TPS PANELS SUMMARY REPORT

Nickel
Cyclic Creep Data

Cyclic Test Number 9
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne
Test Temperature (OK) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R68L. R67L R69L
Specimen Thickness (cm) 0.0274 - 0.0274 0.0274

Specimen Width (cm) 1.2758 1.2756 1.2753
Applied Load (kg) 14.6/22.0 21.7/32.5 29.3/43.7
Test Stress (MPa) 40.7/61.4 60.8/91.0 82.1/122.3

Jide A

3ide B

Cycle % Creep
Number R68L R67L R69L

1 Side A -.03 .01 -.01

Side B -.01 .00 .01

Ave. -.02 .005 .00

5 Side A -.01 .02 .02

Side B -.01 .02 .02

Ave. -.01 .02 .02

15 Side A .00 .06 .07

Side B .01 .05 .09

Ave. .005 .055 .08

25 Side A .00 .06 .10

Side B .03 .07 .11

Ave. .015 .065 .105

50 Side A .03 .13 .19

Side B .05 .17 .24

Ave. .04 .15 .215

75 Side A .05 .17 .27
Side B .09 .24 .33
Ave. .07 .205 .30

100 Side A .09 .25 .39
Side B .13 .31 .44
Ave. .11 .28 .415
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' P REDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel
Cyclic Creep Data

Cyclic Test Number 10
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyne
Test Temperature (*K) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R71L R72L R70L
Specimen Thickness (cm) 0.0274 0.0274 0.0274
Specimen Width (cm) 1.2758 .1.2761 1.2756
Applied Load (kg) 13.9 24.7 36.6
Test Stress (MPa) 39.0 69.2 102.5

Side A

Jide B

Cycle % Creep
Number R71L R72L R70L

1 Side A .02 .01 .00
Side B .02 .00 .02
Ave. .02 .005 .01

5 Side A .02 .01 .05
Side B .01 .03 .07
Ave. .015 .02 .06

15 Side A -.01 .03 .09
Side B .01 .08 .13
Ave. .00 .055 .11

25 Side A .01 .05 .15
Side B .00 .09 .15
Ave. .005 .07 .15

50 Side A .02 .10 .25
Side B .04 .14 .30
Ave. .03 .12 .275
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Nickel

Cyclic Creep Data

Cyclic Test Number 11 (Continuation of Rene' Test i)
Alloy Designation Rene' 41
Heat Number 2490-0-8207
Supplier Teledyvne
Test Temperature (*K) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R40L R41L R39L
Specimen Thickness (cm) 0.0277 0.0277 0.0277
Specimen Width (cm) 1.2723 1.2725 1.2730
Applied Load (kg) 14.1 24.5 36.4
Test Stress (MPa) 39.2 68.0 101.1

Jide A

3ide B

Cycle % Creep *
Number R40L R41L R39L

10i Side A .01 .02 .02
Side B .00 .01 .01
Ave. .005 .015 .015

105 Side A .01 .00 .02
Side B .02 .02 .03
Ave. .015 .01 .025

115 Side A .01 .01 .04
Side B .01 .03 .08
Ave. .01 .02 .06

125 Side A .01 .03 .06
Side B .02 .04- .13
Ave. .015 .035 .095

150 Side A .02 .07 .15
Side B .03 .08 .24
Ave. .025 .075 .195

* Creep Strains are in addition to those obtained in Test 1.
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"PREDICTION OF CREEP IN PHASE I NAS-1-11774
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Nickel
Cyclic Creep Data

Cyclic Test Number 12
Alloy Designation R41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (*K) (See Figure 3-107)
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R73L R74L R75L

Specimen Thickness (cm) 0.0274 0.0274 0.0274
Specimen Width (cm) 1.2761 1.2758 1.2755

Applied Load ( kg) (See Table - Page E-3-17)
Test Stress ( MPa) (See Table - Page E-3-17)

Side A

Side B

Cycle % Creep
Number R73L R74L R75L

1 Side A .03 .00 .01
Side B -.01 -.02 .01
Ave. .01 -.01 .01

5 Side A .03 .01 .06
Side B .05 .01 .03
Ave. .04 .01 .045

15 Side A .09 .06 .09
Side B .10 .03 .13
Ave. .095 .045 .11

25 Side A .13 .09 .17
Side B .15 .07 .17
Ave. .14 .08 .17

50 Side A .23 .15 .31
Side B .30 .17 .33
Ave. .265 .16 .32

75 Side A .31 .19 .41
Side B .43 .24 .50
Ave. .37 .215 .455
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R41 TEST 12

LOAD nu (kg)

1ST STEP 2ND STEP 3RD STEP
SPECIMEN (10 MINUTES) (10 MINUTES) (10 MINUTES)

R73L 14.6 24.4 39.2

R74L 11.8 19.7 32.0

R75L 17.7 29.4 48.2

STRESS n (MPa)

1ST STEP 2ND STEP 3RD STEP
SPECIMEN (10 MINUTES) (10 MINUTES) (10 MINUTES)

R73L 40.9 68.3 109.7

R74L 33.0 55.2 89.6

R75L 49.7 82.3 135.0
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel

Cyclic Creep Data

Cyclic Test Number 13
Alloy Designation R41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (OK) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003

Specimen Number R76L R77L R78L
Specimen Thickness (cm) 0.0272 0.0272 0.0272
Specimen Width (cm) 1.2756 1.2756 1.2753
Applied Load (kg) (See Table - Page E-3-20)
Test Stress (MPa) (See Table Page 'E-3-20)

Side A

Side B

Cycle % Creep
Number R76L R77L R78L

i Side A .02 .01 .02

Side B .01 .01 .01
Ave. .015 .01 .015

5 Side A .03 .02 .04

Side B .02 .02 .03

Ave. .025 .02 .035

15 Side A .06 .04 .08

Side B .07 .05 .07
Ave. .065 .045 .075

25 Side A .08 .04 .11

Side B .09 .07 .10
Ave. .085 .055 .105

50 Side A .11 .07 .17
Side B .17 .11 .17
Ave. .14 .09 .17

75 Side A .16 .11 .22
Side B .22 .12 .25
Ave. .19 .115 .235

100 Side A .19 .13 .27
Side B .28 .15 .31
Ave. .235 .14 .29

E-3-18

MCDONNELL DOUGLAS ASTRONAUTICS COMPANVr. fAST



PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

R41 TEST 13

LOAD ' (kg)

SPECIMEN 1ST STEP 2ND STEP 3RD STEP
(10 MINUTES) (10 MINUTES) (10 MINUTES)

R76L 15.1 24.6 38.4

R77L 11.8 19.4 31.4

R78L 18.2 30.0 48.6

STRESS ' (MPa)

SPECIMEN IST STEP 2ND STEP 3RD STEP
(10 MINUTES) (10 MINUTES) (10 MINUTES)

R76L 42.7 69.7 108.6

R77L 33.5 54.8 88.9

R78L 51.4 84.8 137.4
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Nickel
Cyclic Creep Data

Cyclic Test Number 14
Alloy Designation R41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (oK) 1111
Test Direction Longitudinal
Sheet Thickness (cm) 0.025 + 0.003
Specimen Number R79L R80L R81L
Specimen Thickness (cm) 0.0272 0.0272 0.0274
Specimen Width (cm) 1.2753 1.2748 1.2751

Applied Load (kg) (See Table - Page E-3-22)
Test Stress (MPa) (See Table - Page E-3-22)

Side A

Side B

Cycle % Creep
Number R79L R8OL R81L

1 Side A -.01 -.01 .00
Side B .02 .01 .03
Ave. .005 .00 .015

5 Side A .05 .02 .03
Side B .02 .01 .03
Ave. .035 .015 .03

15 Side A .04 .02 .05
Side B .05 .05 .07
Ave. .045 .035 .06

25 Side A .10 .03 .09
Side B .07 .05 .09
Ave. .085 .04 .09

50 Side A .15 .07 .19
Side B .13 .07 .13
Ave. .14 .07 .16

75 Side A .19 .11 .25
Side B .18 .11 .18
Ave. .185 .11 .215

100 Side A .25 .16 .28
Side B .20 .10 .27
Ave. .225 .13 .275
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R41 TEST 14

LOAD ' (kg)

SPECIMEN IST STEP 2ND STEP 3RD STEP
(10 MINUTES) (10 MINUTES) (10 MINUTES)

R79L 14.5 24.2 38.8

R80L 11.9 19.9 32.1

R81L 18.0 29.8 48.6

STRESS nu (MPa)

IST STEP 2ND STEP 3RD STEP

SPECIMEN (10 MINUTES) (10 MINUTES) (10 MINUTES)

R79L 41.0 68.6 109.8

R80L 33.7 56.2 90.9

R81L 50.5 83.4 136.3

E-3-21
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C'PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

Nickel
Cyclic Creep Data

Cyclic Test Number 15
Alloy Designation R41
Heat Number 2490-0-8207
Supplier Teledyne Rodney
Test Temperature (OK) (See Table - Page E-2-24)
Test Direction Longitudinal.
Sheet Thickness (cm) 0.025 + 0.003

Specimen Number R82L R83L R84L
Specimen Thickness (cm) 0.0272 0.0272 0.0272
Specimen Width (Qm) 1.2748 1.2755 1.2751
Applied Load (kg) (See Table - Page E-3-24)
Test Stress (MPa) (See Table - Page E-3-24)

Side A

Side B

Cycle % Creep
Number R82L R83L R84L

1 Side A .01 .00 .01.
Side B .01 .01 .03
Ave. .01 .005 .02

5 Side A .03 .02 .06
Side B .05 .03 .06
Ave. .04 .025 .06

15 Side A .07 .06 .13
Side B .10 .04 .08
Ave. .085 .05 .105

25 Side A .11 .10 .18
Side B .15 .07 .14
Ave. .13 .085 .16

50 Side A .22 .21 .28
Side B .24 .10 .28
Ave. .23 .155 .28

75 Side A .29 .25 .32
Side B .41 .20 .47
Ave. .35 .225 .395

100 Side A .37 .31 .45
Side B .52 .23 .55
Ave. .445 .27 .50

150 Side A .56 .38 .71
Side B .68 .37 .71
Ave. .62 .375 .71

200 Side A .65 .42 .80
Side B .78 .42 .84
Ave. .715 .42 .82

E-3- 22
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',,, PREDICTION OF CREEP IN PHASE I NAS-1-11774
g-"METALLIC TPS PANELS SUMMARY REPORT

RENE' 41 TEST 15

STRESS a (MPa)
CYCLE TEMP (OK) PRESSURE-

TIME (SEC) Pa. R82L R83L R84L

300 551 .4 - - -

400 980 2.0 13.5 12.4 18.9

500 1104 2.7 28.4 22.9 34.9

600 1147 3 3 36.7 29.7 44.8

700 1169 4.0 41.9 .33.9 50.7

800 1169 4.7 46.0 37.3 55.3

900 1158 5.3 47.7 38.8 56.9

1000 1147 6.9 48.7 39.7 57.8

1100 1131 8.5 52.5 42.7 62.1

1200 1120 9.3 57.1 46.5 67.4

1300 1109 10.7 65.4 53.1 77.1

1400 1099 16.0 72.3 58.0 84.5

1500 1083 24.0 81.5 66.0 96.4

1600 1061 40.0 93.7 75.9 111.0

1700 1013 44.0 100.3 81.6 120.3

1800 932 80.0 108.7 89.6 131.6

1900 851 113.3 115.8 95.5 141.1

2000 728 200.0 115.4 95.4 141.8

2100 626 466.4 106.3 88.0 131.9

2200 540 1466.3 94.4 78.6 118.5

2300 470 4478.9 78.8 65.7 99.8

2400 309 11597.1 54.5 45.0 69.6

2500 309 18795.3 33.7 30.4 44.3
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' PREDICTION OF CREEP IN MONTHLY REPORT NAS-1-11774
SMETALLIC TPS PANELS

Stress and Temperature Steps for

Analysis of Rene '41 Mission

Profile Tests
(Test 15)

Step Time Step Temperature Stress
Number Sec. OK MPa.

R82L R83L R84L

1 300 - 500 980 13.5 12.4 18.9

2 500 - 700 1147 36.7 29.7 44.8

3 700 - 900 1169 46.0 37.3 55.3

4 900 - 1100 1147 48.7 39.7 57.8

5 1100 - 1300 1120 57.1 46.5 67.4

6 1300 - 1500 1099 72.3 58.0 84.5

7 1500 - 1700 1061 93.7 75.9 111.0

8 1700 - 1900 932 108.7 89.6 131.6

9 1900 - 2100 728 115.4 95.4 141.8

10 2100 - 2300 540 94.4 78.6 118.5

E-3-24
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' 0PREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

APPENDIX F-I

TDNiCr LITERATURE SURVEY CREEP DATA

Sources of this data are:

DAC-62124 - Killpatrick, D. H., and Hocker, R. G., "Stress-Rupture

and Creep in Dispersion Strengthened Nickel-Chromium

Alloys," McDonnell Douglas Corporation Report DAC-62124,

May 1968

G.E.-PVT-4662 and 5132 - Private Communications with General Electric Company

File number 4662 and 5132, September and October 1972

MDAC-W-INTL - McDonnell Douglas Astronautics Corporation - West,

in-house testing, 1971

NAS-3-15558 - Data Generated for NASA Lewis Research Center by

Metcut Research Associates under NASA contract

NAS-3-15558 and reported in NASA CR-121221, 1973

NAS-8-27189 - Data Generated for Marshall Space Flight Center, by

Vulcan Testing Laboratory under NASA contract

NAS-8-27189, 1971

F-1-1
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ALLOY - TO NICR ALLOY - TJ NICR ALLOY - TO NICP
STRESS (MPA) - 10,.0 STRESS (MPA) - i 3.4 STRESS (MPA) - 11.3 --

TEMP. (KELVIN) - 1333 TEMP. (KELVIN) - 133 TEMP. (KELVIN) - 1)33
THICKNESS (CM) - .38 THICKNESS (CM) - .03P THICKNESS (CM) - .038 m
TEST CIRECTION - TRANS. TEST OIRECTION - TRANS. TEST DIRECTION - Ta)A1S. -

SOURCE - NA1S- -271 8 9 SOURCE - NAS-8-2?7i-9 SOURCE - IAS-8-27139 > -

rO

STRAIN (PCT.) TIME (F-CUS) STRAIN (PCT,) TIME ( -OUPS) STRAIN (PCT.) TIME (-OUPS) O-o
"o -n

.065 2.0 .060 1.C .050 .5 M-
o .105 4.0 .135 2.85 m

S.1 5 8.3 .168 4.5 .140 2e m
.250 18. C .212 7.0 O 230 40 m -

305 32.0 C .284 11ii.L .330 8.0 , Z
.335 44. .375 23. C .390 13.2
.355 53.. 9402 3 1. .450 22.2

S .375 66.0 *43C 46.L .480 33.
.410 91. 445 55.

.414 116. *462 71. P

.430 138,. .47G 79.0
,443 163. .485 96. 0 cp
.455 18 8.6 *495 IC4,. C=
.465 212.0 5l0 12i. :
.475 232.C

*495 282.Z IO
ALLOY - TO NICP ALLOY - TO NICR ALLOY - TO NICR rn

STRESS (MPA) - 159.6 STRESS (MPA) - 75.8 STRESS (MPA) - 86.2 -
TEMP. (KELVIN) - 1 33 TEMP. (KELVIN) - 1:89 TEMP. (KELVIN) - 1089
THICKNESS (CM) - .'3 THICKNESS (CM) - .12 THICKNESS (CM) - .102 --
TEST DIRECTION - TRANS, TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.

SOURCE - NAS-8-27189 SOURCE - GE-PVT-4662 SOURCE - GE-PVT-4662

STRAIN (PCT,) TIME (POUPS) STRAIN (PCT.) TIME (fOURS) STRAIN (PCT.) TIME (POURS)

.070 e1 .100 500.0 .1zi 110.0.070 .1 .i OO 532.0 •

.180 .2 .200 132t.0 .200 336.0

.450 .3 .500 472u.3 .500 890.0

.010 1.Z

.025 2.5 ALLOY - TO NICR ALLOY - TO NICR

.040 5.0 STRESS (MPA) - 100.j STRESS (MPA) - 113.3

.080 9.5 TEMP. (KELVIN) -- 189 TEMP. (KELVIN) - 1 89

.155 23.0 THICKNESS (CM) - .152 THICKNESS (CM) - .152

.250 31.5 TEST DIRECTION - TRANS. TEST DIRECTION - TRANS. z

.349 46,* SOURCE - GE-PVT-4662 SOURCE - GE-PVT-4662
.440 58.5 1

STRAIN (PCT,) TIME (HOUoS) STRAIN (PCT.) TIME (HOURS)

.100 1 7 L. .100 7 .
.200 772.2



ALLOY - T NICR ALLOY - TO NICR ALLOY - TO NIC?
STRESS (MPA) - 119.1 STRESS (MPA) - 117.2 STRESS (MPA) -

TEMP. (KELVIN) -in) TEMP. (KELVIN) - 1:89 TEMP. (KELVIN) - V4
THITHICKNESS ) - THICKNESS (CM) - ~2 THICKNESS (CM) - .102 m
TEST OIRECTION - T ANS. TEST DIRECTION - LONG. TEST DIRECTION - LONG. mSOURCE - GE-PVT-4(662 SOURCE - GE-P T-46F2 SOURCE - EF-PVT-4662

STRAIN (PCT.) TIME (tOUPS) STRAIN (PCT.) TIME (HOUOS) STRPAIN (PCT.) TIME (FOUZ'S) Z
O

7 130 3.L .100 120.0 .100 6.3 o
.200 12 .L .200 90C. .200 13.0 m100 450. .500 31.L z mS.200 1250. .I 00770. m 

.200 8 05.0 r.530 113i.0ALLOY - TO NICR ALLOY - TO NICR 50 1130.00 STRESS (MPA) - 165.5 STRESS (MPA) - 65.5 ALLOY - TMP NCR0 TEMP. (KELVIN) - 1389 TEMP. (KELVIN) - 1144 TEMP (ELVIN) - 1144c THICKNESS (CM) - .152 THICKNESS (CM) - 25 THICKNESS (CM) - 250 TEST OIRECT - LOG. TEST DIRECTION - TRANS. TEST IRECTI - TRANS.
SOURCE GE-PVT-4662 SOURCE - NAS-3-15558 E@ SOURCE - NAS-3-15558

l STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOUPS) STRAIN (POT.) TIME (HOURS)
.10 .2- 05S.20 .1 .005 .3 rn.200 3.2 .015 .3 .010 m.500 15.c .015 .4 .*015 1.5, -S 100 5  .035 1.0 .15 1.5 o

.085 6.1 *015 3.3ALLOY TO NICR .15 .17.55 5.7STRESS (HPA) 75.8 .145 25.1 0751.TEMP. (KELVIN) 1144 .165 30,7 *075 29THICKNESS (CM) .:2 .18c 49.1 .0092.
TEST DIRECTION T- ANS. .180 674 .090 3.

SOURCE - NAS-3-15558 .200 73.1 .100 53.6
.22 89.3 .105 69.1S230 96.5120 98.2STRAIN (PCT.) TIME (HiOURS) .240 9 .120 98.2112.9 120 117.4

NI .010 .2
S.015.3

S.320, .
.030 3.2
.040 6.3
.955 1.9

*060 
.065 35F.7

70 45.1

.085 5.5

.085 i. 9



ALLOY - T2 NICR ALLOY - PT NICr ALLOY - TD NrICPSTRESS (MPA) - 75 STRESS (MPA) - 75,98 STRESS (MPA) 75.TEMP. (KELVIN) - 1144 TEMP. (KELVIN) 1144 TEMP. (ELVIN) 1144THICKNESS (CM) - .25 THICKNESS (CM) - 1 MP. (KELVIN) - 1144
TEST DIRECTION - TRANS. TEST DIRETION - .RS1 THICKNESS (CM) - .51 mOU CE - NA S-I- TS c;ET-I ANS TEST DIRECTION - TRANS. 1

SOURCE- NAS--159CE8 S--5 SOURCE - NAS-3-15-58

STPAIN (PCT.) TIME (hOUvS) STRAIN (PCT.) TIME (hOURS) STRAIN (PCT.) TIME (HOURS) -
0 0

.015 .1 .o005 
-0 .20

.045 2 .005 .035 .3 m
. 055 .020 .5 .030 1.0 -oM : •o,040 1•7 .040 3.3 z.070 1.2 .035 3.6 .055 6.1
.200 7.6 .050 5.1 .075 11.6.280 17.9 .35C 1.7 .090 23.,.330 25.3 .075 2. 6 .100 23

S.440 4.7.07 29.3 .120 46.0S.49406b7 .085 45.1 .125 53.87490 0b. .100 53. E 143 69.3 C
^ 7 .105 69.9 .135 74.5S545 89.7 o091 77.5 .150 93. 0S.565 96.9 .115 92. .155 93.0S.585 112.8 .130 13 .1 .

ALLOY - TD NICP ALLOY - TO NICP ALLOY - TO NICR PmSTRESS (MPA) - 75.8 STRESS (MPA) - 79.3 STRESS (MPA) - 79.3S(KELVIN) - 11 TEMP. (KELVIN) -1144 TEMP. (KELVIN) 1144 THP. (KELVIN) - 114 o1 THICKNESS (CM) 51 THICKNESS (CM) - .- 25 THICKNESS (CM) - 051TEST DIRECTION - T ANS. TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.SOURCE - NAS-3-15558 SOURCE - NAS-3-15551 SOURCE - NAS-3-15558

STRAIN (PCT.) TIME (HOUDS) STPAIN (PCT.) TIME (HOUO1) STRAIN (PCT.) TIME (POURS)

.020 .1 .020 .2 .020 e1S020 .2 .025 .3 .020 .2.025 3 .625 a4 .03 .30 3. .5 025 .030 .4

.C4'0 1.3 .030 1.3 *040 1.9.065 5. 5 .035 3.7 * 40 3.605O0 I. .050 9, 1 .075 9. 7.105 23.3 .055 19.9 1I00 1,9.2.125 29. 3 .070 43.8 .100 27, 7
13~~45.1 .085 51. 130 44.5.145 53.4 .090 66.8 ,120 51.7* 150 69. .035 75,6 .120 67. 4.160 77.4 .090 93.3 .130 75. 3 Io155 q8.5 .095 o 4, .140 9,7

.155 11- 8 144 95. 8
150 11. 3



ALLCY - TT' NICP ALLOY - TD NICR ALLOY - TD NTCR
STRESS (MPA) - 8J.7 STRESS (MPA) -8.7 STRESS (MPA) - 2.7

TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) -1144THICKNESS (CM) - .25 THICKNESS (CM) - .C51 THICKNESS (CM) - .51
TEST DIRECTION - TRANS, TEST DIRECTION - TRANS, TEST DIRECTION - TRANS.

SOURCE - NAS-3-15558 SOURCE - NAS-3-155 5 SOURCE - NAS-3-15558

PO
STRAIN (PCT.) TIME (FOURS) STRAIN (POCT) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) O

0

.020 .1 *015 .1 .025 1S.020 . .015 .2 .045 .200 .03C .3 .020 .3 .045 .3 2 mSw .030 .4 .035 11 060 .4 m

.035 . .085 5.8 .065 .
O .050 1.4 .111 16.5 *330 18.5

.050 3.8 .140 25.1 .380 25.u

.06 5.6 .155 404 .510 42.5

.050 11.1 .170 49.3 .560 45.9060 21.9 .180 64.3 .760 74.4
* .065 3.C *185 69.6 .875 90.6.070 34.5 *225 88.9 0900 96.8 c_
.065 47.4 .250 114.7 .985 115.0

N .075 53.5
S- .075 69.0

.080 77.3

.090 101.1O CIO

ALLOY - TO NICP ALLOY - TO NICR ALLOY - TO NICR V-STRESS (MPA) 82.7 STRESS (MPA) - 82.7 STRESS MPA) - 86.2
TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144THICKNESS (CM) - 051 THICKNESS (CM) - .051 THICKNESS (CM) - .025
TEST DIRECTION - TRANS. TEST OIRECTION - TRANS. TEST DIRECTION - LONG.

SOURCE - NAS-3-15558 SOURCE - NAS-3-15553 SOURCE - NAS-3-15558

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (IOURS) STRAIN (PCT.) TIME (HOURS)

.010 .2 .015 .2 .035 .1*015 .3 *020 .3 .050 .3
S025 .4. .035 .7 .050 .4
* .025 .5 .055 1.2 .065 1.2
*040 1.0 .085 7.2 .095 5.4
.080 4.4 .125 18.8 .105 9.8
.075 5.6 .16 25.2 .130 23.2
.100 11.2 .170 43.6 .135 29.2 Z
.130 20.6 .195 49.2 *155 53.3
.155 29.8 .200 64.8 .150 69.0 C,
.235 49.2 .220 73.3 .170 77.3.185 53.9 .235 31.4 .170 92.1
*205 70.1 .255 125.0 .170 98.4
.215 77.5 .260 136.3 9170 119.7
.235 94.0
.250 98.7
.245 117.5



ALLOY - TO rNICP ALLOY - TO NICR ALLOY - TO NICR .
STRESS (MPA) - 8 .5 STRESS (MPA) - 89 STRESS (MPA) - 91.7

TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144
THICKNESS (CM) - .025 THICKNESS (CM) - .351 THICKNESS (CM) - 25 m
TEST DIRECTION - LONG. TEST DIRECTION - T ANS TEST DIRECTION - TRANS.

SOURCE - NAS-3-15553 SOURCE - NAS-3-155r9 SOURCE - NAS-3-1558
rO

STRAIN (PCT.) TIME (HOURS) STRPAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (hOURS)
-nl

.020 *.025 .1 .020 1
0 .020 .2 .045 .2 .025 .2 m

S.020 .3 .065 .4 .045 .3 Z m
1 .040 .4 .065 .5 .045 .5 rm

.035 101 .100 2.2 .105 1.2 C/
p .045 2.7 .170 6.2 .215 2.9

. 45 3.3 *240 11.3 .295 4.2

.085 9. c .300 22.0 .300 5.3
0 .080 20.1 9325 30.1 .425 10.6

C .080 27.6 .410 48.2 .555 20.6
.090 45.4 .425 54.3 .625 29.2
.090 51.4 *485 70.9 .705 45.4 l
.105 68.2 *500 77.9 .745 53.2
.110 75.5 *550 94.7 .785 63.4
.110 91.2 .555 98.5 .815 77.2
.135 99,.9 .o10 122.5 .860 94.9

.820 100.9
ALLOY - TO NICR ALLOY - TO NICR :m _

STRESS (MPA) - 93.1 STRESS (MPA) - 94,5 ALLOY - TO NICR --TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 STRESS (MPA) - 11C.3 oSTHICKNESS (CM) - .25 THICKNESS (CM) - .025 TEMP. (KELVIN) - 1144 :TEST DIRECTION - LONG, TEST DIRECTIOn - LONG. THICKNESS (CM) - .025
SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 TEST DIRECTION - LONG.

SOURCE - NAS-3-15558

STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (FOURS)
SSTPAIN (PCT,.) TIME (POURS)

.025 .1 .035 .1
.025 .2 .00 .010 .3
*025 .5 .070 .4 .020 .4
.340 1.4 .190 3,1 .030 .5
.060 3.8 .222 4.5 .350 2.2
.085 13.7 .235 10.1 .065 6.4

0 .085 20.2 9375 2L.8 .070 11.6
.100 27.9 .420 28.1 .085 21.2
.100 32.5 .475 44.1 .095 30.4 Z
.120 43.2 .500 52.0 .095 36.6 >
.125 51.8 .540 68.5 .110 48 .0
.135 67.1 .545 75.9 .115 54.3
.135 86.3 .580 90.6 .120 727 I
.135 91.1 .600 9 7 . L .130 78.2
.155 96.3 .630 114.8 .140 93.9 b
.190 115.6 .14 101 .1



ALLOY - TO NtICR ALLOY - Tn NICP ALLOY- TO NTCR
STRESS (MPA) - 110.3 STRESS (MPA) - 113.8 STRESS (MPA) - 12.

TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144THICKNESS (CM) - .151 THICKNESS (CM) - .51 THICKNESS (CM) - .325
TEST OIRECTION - LONG. TEST DIRECTION - LONG. TEST DIRECTION - LONG.

SOURCE - NAS-3-15553 SOURCE - NAS-3-15558 SOURCE - NAS-3-155 5

r
STRAIN (PCT.) TIME (FOUQS) STRAIN (PCT.) TIME (hOURS) STRAIN (PCT.) TIME (hOURS) .0o

.010 .1 .010 .1 08
4 .020 .4 .020 .2 *130 2 >0020 .5 .020 .4 *140 .3 Z m

~ -030 1.0 .025 1.3 .140 .4 m "
.045 5.6 .040 5.3 .165 . a
.070 17.6 .035 9.8 .175 3.7

D .075 25.3 .060 19.7 205 9.4
0 .075 41.7 .060 29.7 .240 19.

*085 49.2 .G65 46.1 .240 27.7S .095 67.0 .065 71.0 .240 33.9.095 73.2 .065 77.5 .255 43.3* .100 97.1 .065 93.6 .265 51.8
.100 112.0 .070 101.2 .290 68.6

T ALLOY - TO NICR ALLOY - TO NICR .280 75.8
mm' STRESS (MPA) - 124.1 STRESS (MPA) - 131.0 .295 91.6o TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - 1144 .295 99 4THICKNESS (CM) - .051 THICKNESS (CM) - .051o r

TEST OIRECTION - LONG. TEST DIRECTION - LONG. ALLOY - TO TC
c SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 ALLOY - TD NICR oSTRESS (HPA) - 137.9 oTEMP. (KELVIN) - 1144-THICKNESS (CM) - .0E3

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (OURS) TEST DIRE(CM) - .063
) SOURCE - OAC-62124.035 .1 0351

*04 . .035 .2 STRAIN (PCT.) TIME (HOURS).5 5 .050 .3
.045 1.4 .055 .4
.075 2.8 .070 1.2
.085 5.4 .080 2.4 .090 .1
.100 5.6 .130 7.7 .140 .2
S.115 10.6 .170 18.5 .200 .4

S.150 21.4 .210 26.6 .230 .6
4 •155 29.5 .255 47. L .280 1.

.195 49.9 .355 7G.C .340 2.3

.220 72.9 .380 92.1 .400 4 .C

.245 95.0 .410 98.6 .430 6, 0

.255 11.4 .435 113.7 .480 10 O u..50i 1 .2

-,4



ALLOY - TO 'NIC ALLOY - TA NCR ALLOY - TO NIC\
STRESS (MPA) - 137.3 STRESS (MPA) - 1.4 STRESS (MPA) - 151.7

TEMP. (KELVIN) - 114 TEMP. (KELVIN) - 1144 TEMP. (KELVIN) - I44
THICKNESS (CM) - .)63 THICKNESS (CM) - .363 THICKNESS (CM) - 163 m
TEST OIRECTION - LONG. TEST DIRECTION - LONG. TEST DIRECTION - LCNG. I oSOURCE - DaC-r2124 SOURCE - DAC-121Z4 SOURCE - DAC-b2124 >

0

STRAIN (PCT.) TIME (POURS) STRAIN (PCT.) TIME (FOUJPS) STRAIN (PCT.) TIME (HOURS) 0 z
.- 0

.060 .1 .20 .1101 m
O .103 .2 .350 .2 .210 2 > m

13 .4 .460 :4 .320 .4 m
.160 .6 .490 .5 .380 -m.190 1,0 400 .7 cz
.240 2. *460 i.0
.30 4., .500 1.2
.340 .
.400 10.0
.450 15.0
.500 2j.0

ALLOY - TD NICR ALLOY - TD NTCR STRESS (MLLPA - 65.5IC..... S (AY- 65, 5CSTRESS (MPA) - 60.7 STRESS (MPA) - 6?.1 TEMP. (KELVIN) - 1260
TEMP. (KELVIN) - 1200 TEMP. (KELVIN) - 120 THICKNESS (CM) - .152STEMP. (KELVIN) - 120THICKNESS (CM) .15 TEST DIRECTION - TRANSH THICKNESS (CM) - .102 TEST DIRECTION -TRANS. SOURCE- GE-PVT-5132co TEST DIRECTION - TRANS. SOURCE - GE-PVT-512 SR G-_

SOURCE - GE-PVT-4662
STRAIN (PCT. TIME (HOUS) STRAIN (PCT.) TIME (HOUOS) o

STRAIN (PCT.) TIME (HOURS)STRAIN (PCT.) TIME (HOURS) 
.100 15.0.100 .3 .200 90.0.100 30.0 .200 2.9 .500 60 ,U

.200 140.0 .5 0 6

.500 420.0

ALLOY - TO NICR ALLOY - TO NICR ALLOY - TD NICR
STRESS (MPA) - 66,2 STRESS (MPA) - 72.4 STRESS (MPA) - 72.4

TEMP. (KELVIN) - 12J TEMP. (KELVIN) - 1200 TEMP. (KELVIN) - 12J0
THICKNESS (CM) - .102 THICKNESS (CM) - .363 THICKNESS (CM) - .152
TEST DIRECTION - TRANS3 TEST DIRECTION - LONG. TEST DIRECTION - TRANS.

SOURCE - GE-PVT-4:62 SOURCE - GE-PVT-I532 SOURCE - GP-PVT-F-2

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (tO!U'S) STRAIN (PCT.) TIME (FOURS)

.100 4,0 o10 .2 .100 150.0

.200 68,0 .200 1.0 *200 539.~

.5Su 175. .500 36.



ALLOY - T9 NICR ALLOY - T3 NTIC ALLOY - TD ICR
STRESS (MPA) - 75.8 STRESS (MPA) - 79.3 STRESS (MPA) - 77.?

TEMP. (KELVIN) - 12- TEMP. (KELVIN) - 120 TEMP. (KELVIN) - 12 yi
THICKNESS (CM) - .102 THICKNESS (CM) - .063 THICKNESS (CM) - .152
TEST DIRECTION - TAN. TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.

SOURCE - GE-PVT-4662 SOURCE - GE-PVT-5132 SOURCE - GE-PVT-4662 >
rO

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (fOUPS) STPAIN (PCT.) TIME (HOURS)

.100 1.3 *200 .1 .100 25.0

.200 4.0 .500 .6 .200 83.0 >m

.500 15. i Z m

ALLOY - TF NICR ALLOY - TO NICo ALLOY - TO NICR '
STRESS (MPA) - 79.3 STRESS (MPA) - 79q3 STRESS (MPA) - 82.7

TEMP. (KELVIN) - 120, TEMP. (KELVIN) - 1202 TEMP. (KELVIN) - 1200
THICKNESS (CM) - .152 THICKNESS (CM) - .152 THICKNESS (CM) - .152
TEST DIRECTICN - LONG. TEST DIRECTION - TRANS. TEST DIRECTION - LONG.

SOURCE - GE-PVT-5132 SOURCE - GE-PVT-5132 SOURCE - GE-PVT-5132

CO,
i STRAIN (PCT.) TIME (HOURS) STPAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (FOURS)

' H .100 .1 *100 .1 .200
.200 .5 *200 1.0 .200 3.00 ~ .500 38.0 .500 9.5 .500 215.0m

ALLOY TO - TOALLOY TO NICR ALLOY - TO NTCR
STRESS (MPA) - 86.2 STRESS (MPA) - 89.6 STRESS (MPA) - 93.1 0

TEMP. (KELVIN) - 1200 TEMP. (KELVIN) - 1200 TEMP. (KELVIN) - 1200
THICKNESS (CM) - .152 THICKNESS (CM) - .063 THICKNESS (CM) - .152
TEST DIRECTIO- LONG. TEST DIRECTION - LONG. TEST DIRECTION - LONG.

SOURCE -GE-PVT-5132 SOURCE - GE-PVT-5132 SOURC P 32

t STRAIN (PCT.) TIME (IOUPS) STRAIN (PCT.) TIME (-OURS) STRAIN (PCT.) TIME (HOURS)

.100 .1 .100 .2 *100 .1

.200 .4 .200 1.5 *200 .2

.500 25.0 .500 25.0 .500 23.0
ALLOY - TD NICR ALLOY - TD NICR

STRESS (MPA) - 96.5 STRESS (MPA) - 114.5TEMP. (KELVIN) - 1200
TEMP. (KELVIN) - 1200 THICKNESS (CM) - .152
THICKNESS (CM) - .152 TEST DIRECTION - LONG.
TEST DIRECTION - LONG. SOURCE - GE-PVT-4662 I

SOURCE - GE-PVT-4662
STRAIN (PCT.) TIME (I-OURS)

STRAIN (PCT.) TIME (HOURS)
.100 40o 0

.100 100.0 .200 49O. '

.200 270.0



ALLOY - TO NICR ALLOY - Tn NICR ALLOY - TO NICR
STRESS (MPA) - 41.4 STRESS (MPA) - 44.8 STRESS (MP.A) - 44.8

TEMR. (KELVIN) - 1255 TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255
THICKNESS (CM) - .038 THICKNESS (CM) - .025 THICKNESS (CM) - ,338 m
TEST DIRECTION - TRANS. TEST DIRECTION - TRANS TEST OIRECTION - TRANS,

SOURCE - NAS-8-27189 SOURCE - NAS-3-15558 SOURCE - NAS-8-27189
rO

STRAIN (PCT.) TITE (HOUPS) STRAIN (PCT.) TIAE (HOURS) STRAIN (PCT.) TIME (HOURS) 1 Z

-O
.025 1.C .005 .1 .015 .5

0 .035 5. .305 .2 .0330 1.5 m
.043 10.C .005 .4 .040 2.6 Z m
.065 2".1 .025 1.4 .065 5.5 r
.085 30.0 .045 3.2 .080 7.7 cn
.118 44.0 .040 5.6 .145 18.4
.142 56.0 .045 12.5 .210 31.2
.170 7(. .D060 21.8 .290 42,5

O .188 79, .070 29.6 .355 52.2
.209 93. . .070 34.3 *440 68.0
.225 102.0 .075 45.0 .465 73.5
.255 117.0 .090 53.5
.300 140.0 .110 68.9
.385 19. 115 77.6
.425 215.. .120 92.8
.467 239.. .130 93.1

e145 117.3ALLOY - T NIC 3 ALLOY - TD NICR no ALLOY - TO NI STRESS (MPA) - 483 m
STRESS (MPA) - 44.8 ALLOY - TO NICR TEMP (KELVIN) - 1255 -

TEMP. (KELVIN) - 1255 STRESS (MPA) - 46.9 THICKNESS (CM) - 025 0
C THICKNESS (CM) - .038 TEMP. (KELVIN) - 1255 TEST DIRECTION - TRANS

TEST DIRECTION - TRANS. THICKNESS (CM) - .025 SOURCE - NAS-3-.5558
SOURCE - NAS-8-27189TEST DIRECTION - TRANS.

SOURCE - NAS-3-15558

STRAIN (PCT.) TIME (POURS) STRAIN (PCT.) TIME (HOURS)
S STRAIN (PCT.) TIME (OUPS)

.025 1.0 .015 .1

.030 2 L .0151 015-1 "025 •3.035 4.4 .020 .2 *035

.045 3. 0 .030 .4 . .4

.085 22.0 .025 1.Z .040 .5

.112 29.0 .065 2.4 .1025 3.2.165 44.C .075 7.5 .125 6.3.188 52.3 .100 17.7 "165 1,37.232 68. 0 .115 25.8 .205 20.7 z

.260 76.C .155 43.9 .260 3 20

.310 94.0 .145 5. 2 .295 3. 7

.335 102.0 .175 66.9 .340 451

.378 118.0 .205 74.J .375 54.2.433 i 9.0 .225 89.9 .35 5j6

.460 148.4 .245 122.8 .460 78.2500 165.0 520 94.
.520 1-31.9



ALLOY - Tn NICR ALLOY - TO NICR ALLOY - TO rNICp
STRESS (MPA) - 48.3 STRESS (MPA) - 51.7 STRESS (MPA) - 5E.2

TEMP. (KELVIN) -1255 TEMP. (KELVIN) - 255 TEMP. (KELVIN) - 1255 gTHICKNESS (CM) - .35 THICKNESS (CM) - .038 THICKNESS (CM) - .051m
TEST DIRECTION - TRANS. TEST DIRECTION TRANS. TEST DIRECTION - TRANS. -SOURCE - N AS 8.-27189 SOURCE - NAS-8-27189 SOURCE - NA S-3-15558 >

rO
STRAIN (PCT.) TIME (hOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) z

-n
.040 1.0 .085 8.0 .015 .1 M
.060 2.5 .125 13.1 .025 .3 m.075 5.7 .190 22.0 .025 .4 Z m
.105 11.0 .265 32.0 .030 .5 m ".170 22.0 .380 48.5 .035 1.0 c.245 36.0 .430 56.0 .060 5.3
.285 44.5 .075 10.3.335 55.0 .095 20.1.425 73.5 .110 29.3S110 35.3

ALLOY - TO NICP ALLOY - TO NICR .125 46. 8STRESS (MPA) - 55.2 STRESS (MPA) - 55,2 .125 53.2 cTEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255 .140 70.6THICKNESS (CM) - .051 THICKNESS (CM) -. 051 .140 77.1 BTEST OIRECTION - TRANS. TEST DIRECTION - T RANS. .150 92.7 oSOURCE - NAS-3-15555 SOURCE - NAS-3-15558 .150 100.0
SALLOY - TO NICR

STRAIN (PCT.). TIME (HOUPS) STRAIN (PCT.) TIME (HOURS) STRESS (MPA) - 58.6
TEMP. (KELVIN) - 1255
THICKNESS (CM) - .051

*005 .1 .010 .3 TEST DIRECTION - TRANS..005 .2 .018 .4 SOURCE - NAS-3-1555 8.025 .4 .015 .5.070 2.7 .015 1.10 .070 5.5 .035 4.8 STRAIN (PCT.) TIME (-OUPS)S.070 11.1 .045 6,4.085 21.5 .025 13.1
11ii 29.5 .045 21.2 .015 .2.110 35.6 .055 3.1 .010 .3.120 45.1 .070 45.9 .035 .5

*135 53.5 .075 54.C .040 1.2S 145 70.3 .090 71.9 .065 16.9.140 77.6 .090 78.2 *08L 24.6S; .145 93.3 .090 94,.8 .100 4.4.155 101.2 105 101.9 .095 48 9
.125 5.1 z.120 72.9
*145 87.5
.173 95. 4
*200 11.i 4



ALLOY - TO NICR ALLOY - TU NICR ALLOY - TO NICR ,
STRESS (MPA) - 68.9 STRESS (MPA) - 68.9 STRESS (MPA) - 72.4

TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1253 TEMP. (KELVIN) - 1255
THICKNESS (CM) - .•25 THICKNESS (CM) - .338 THICKNESS (CM) - .051
TEST IRECTION - LCNG. TEST DIRECTION - TPANS. TEST DIRECTION - LCNG.

SOURCE - NAS-3-15558 SOURCE - NAS-8-27189 SOURCE - FNAS-3-15558
rO

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (OCURS) STRAIN (PCT.) TIME. (I-OURS) o

.920 .1 .040 *1 020 .1 .m
S.03C .2 .070 .2 .020 .2 m

; .035 3 .120 *.4 .030 .4 r
z .040 .4 .160 .6 .035 .6 r -
~ .045 .5 .210 .9 .030 1.2 z
p .045 1.0 . .250 1.2 .035 6.1

.080 3.3 .295 1.6 .030 19.4
0 .1 3 7.8 .340 2.c .050 26.C
O .115 27.8 .375 2.4 .045 44.9
C 13r 44.1 .415 2.8 .045 50.6

• .150 51.8 .435 3.3 .050 68.8
p%.160 75.6 .475 3.8 .060 98.5

.165 91.7 .065 113.2 g

.170 99.5

.170 113.5

ALLOY - TO NICR ALLOY - TD NICR ALLOY - TO NICRo STRESS (MPA) - 79.3 STRESS (MPA) - 89.6 STRESS (MPA) - 93.1 rn
TEMP. (KELVIN) - 1255 STRESS (MPA) - 89,5 TEMP. (KELVIN) - 1255 C-
b THICKNESS (CM) - .051 THICKNESS (CM) - 051 THICKNESS (CM) - 025

S- TEST DIRECTION -LONG. TES T OIRECTION - LONG.
SOURCE - NAS-3-158 SOURCE - NAS-3-15558 SOURCE -NAS--15558

STRAIN (PCT.) TIME (FOUDS) STRAIN (PCT.) TIME (HiOU) STRAIN (PCT.) TIME (FOURS)

.010 .1 .015 1 035 .1
*025 .2 .020 3 065 .
.020 .4 .030 •4 *070 .4
.035 12 .04 .5 .070 .5

S.030 4.0 .35 1.1 .080 1.1
• .040 9.1 050 *,9 13.04055 23.6 .050 1.9 .115 5.3
.055 23, . .050 35 .120 13.3
.060 29.6 ro .075 1 9 *17C 21.1
.060 47.5 .095 27.5 .180 29.2
.075 53.7 10055 205 47.3 

.20545.4 215..075 7i.2 .105 55.5.0877. 2 51.6 .235 77.3
13.085 657. .270 93.8

.085 10m. .125 75.7 .285 121.6
.130 91.2
.135 g9.9
*145 116.6



ALLOY - TO NICR ALLOY - TOC ItCR ALLOY - TO NICR
STRESS (MPA) - 93.1 STRESS (MPA) - 93.1 STRESS (MPA) -1

TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255
THICKNESS (CM) - .051 THICKNESS (CM) - .051 THICKNESS (CM) - .51 m
TEST DIRECTION - LONG. TEST DIRECTION - LONG. TEST OIRECTIOC - LONG. y

SOURCE NAS-3-1 5553 SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 -
rO

STRAIN (PCT.) TIME (POURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) O

0 o
.005 .1 .025 .1 ,015 .1 -OM
.015 .2 .030 2 .020 .3 >
.010 .4 .040 .3 .020 .* m2 m
.020 .5 .335 .4 .040 .5 r-
.030 1.0 .055 .8 .075 1.0 z
.025 1.8 .090 4.3 .080 3.8
.055 3.3 .105 5.5 .110 9.6

o .055 6.3 .120 11.3 .16C 19.8
e .075 10.8 .140 20.6 .190 27.9
§ .095 22.4 .165 29.9 .220 34.1

S .095 30.3 .190 46.1 .260 43.5
.125 34.9 .210 53.8 .290 51.9
.130 45.8 .225 70.1 .355 68.7r
.150 53.5 .245 77.6 .395 76.0
.180 70.3 .265 93.8 .460 91.7
.195 77.8 .270 98.6 .490 99.7
.230 94.1 .300 117.5 c,9
.240 101. 7 r-,

ALLOY - TO NICR ALLOY - TO NICR ALLOY - TO NICR o
STRESS (MPA) - 37.9 STRESS (MPA) - 17.2 STRESS (MPA) - 20.7

TEMP. (KELVIN) - 1311 TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366
0 THICKNESS (CM) - .102 THICKNESS (CM) - 038 THICKNESS '(CM) - .038

TEST OIRECTION - TRANS* TEST DIRECTION - TANS* TEST OIRECTION - TRANS.
SOURCE - GE-PVT-462 SOURCE - NAS-8-27189 SOURCE - NAS-8-27189

STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOUPS)

.100 248.0 .025 2.0 .015 1.0
' .200 357.0 .034 5.u .022 2,0

.345 10.5 .022 5.7

.060 - 20.0 .042 19.8

.110 42.0 .075 25.5
.195 67.5 .100 30.0
*276 9.U .160 41.5 z
.365 112.L .235 49.5 >
.482 139.0 .265 54.5

.425 73.3

.475 78.0
~3~ L~i

a 4'b



ALLOY - TO NICR ALLOY - TO NICR ALLOY - O NICR
STRESS (MPA) - 5R.6 STRESS (MPA) - 58.6 STRESS (MPA) - 62.1

TEMP. (KELVIN) - 1255 TEMP, (KELVIN) - 12r5 TEMPO (KELVIN) - 1255 m
THICKNESS (CM) .051 THICKNESS (CM) -. 51 THICKNESS (CM) ,25

TEST DIRECTION-- TRANS, TEST CIRECTION- TPANS. TEST OIRECTION - TRANS. -
SOURCE - NAS-3-15558 SOURCE NAS-3-1555 SOURCE - NAS-3-15558 rr -

c-Z

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (FOUPS) --

0 .020 .1 .005 .1 .020 .1 "M

z 030 .2 .005 .2 .035 .3> m

S.030 .4 045 .3 55 .4
.055 .5 .073 3.0 .G 060 .5 r-

.080 1.5 .105 9.4 .055 .7 z
P .130 5.b .130 2G. 7 .080 2 5

.180 11.8 .150 27 2 .075 3.5
* .240 21.3 .180 45.5 .105 9.1
S280 29.7 .185 51.1 .135 27.7

.370 46.4 .195 E6.7 .145 277
S420Z 53.7 .205 75.2 170 3.

.530 69.4 .24; 93.4 .185 51.5
• .590 77.5 .310 128.9 .255 68.6
.705 92.7 .335 138.7 .25C 72.3
745 977 .230 91.7

.915 118.3 .24L 123.5

0 ALLOY -TONCO- TO NICR ALLOY TD NIC ALLOY - TD NICR 1 r
STRESS (MPA) - 62.1 STRESS (MPA) - 65.5 STRESS (MPA) - 65.5 "v

TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255 TEMP. (KELVIN) - 1255 o

THICKNESS (CM) - .025 THICKNESS (CM) - .025 THICKNESS (CM) - '351 -
TEST DIRECTION - TRANS. TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.

SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 SOURCE - NAS-3-15558

0 STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (HOURS)

.050 .3 .315 .1 .020 .1

.040 .4 .020 .2 .025 .2

.040 .8 .035 .4 .035 .3
.045 1.0 .040 .5 .035 .5

i .090 17.6 .060 1.2 .055 1.3
.105 24.7 .095 3.8 .105 4.1
.115 43,3 .125 9, 2 .140 8.8
.115 48.6 .145 19.8 .230 20.3 7
.115 68.2 .160 28.1 .275 28.1
.105 72.5 .170 48.4 .270 32.9 cn
.095 85.7 .195 71.4 .355 43.8 I
.100 122.2 .200 93.4 .390 51.5
.130 136.8 .200 99.8 .445 68.3

.480 75.8

.520 92.C
,540 99.8 .



ALLOY - T NIC ALLOY T N ALLOY - TC NICNIC
STRESS (MPA) - 20.7 STRESS (MPA) - 241 STRESS (MPKELVIN) - 24

TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366 TEMP (KELVIN) - 1366 m
THICKNESS (CM) - .38 THICKNESS (CM) - .038 THICKNESS (CM) - .3 me
TEST DIRECTIO - TRANS. TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.

SOURCE - NAS-8-27189 SOURCE - NAS-8-27199 SOURCE - AS-8-27189 -.
rO

STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (HOUPS)

i .010 2.0 .018 1.. *015 1.0 - s
a .019 11.0 .040 2.5 .035 2.2 m
Z .045 22.0 .055 4.5 .041 4.5

. 110 37.5 .070 6.5 .066 9.8 r-

.159 45.5 .120 11.5 .105 21.6 , z

.260 65.0 .220 23.- .150 29.4

.385 87.5 .292 3 .L .240 45.2
S.462 46.6 .285 53.5
SALLOY - TO NICR ALLOY - T NICR .385 68.5

STRESS (MPA) - 27.6 STRESS (MPA) - 27. .426 74.

TEMP. (KELVIN) 1366 TEMP. (KELVIN) - 1366 ALLOY - TD NICR o*
THICKNESS (CM) - .338 THICKNESS (CM) - .051 STRESS (MPA) - 31.0 c
TEST DIRECTION - TRANS. TEST DIRECTION - LONG. TEMP. (KELVIN) - 1366

SOURCE - NAS-8-27189 SOURCE - NAS-3-15558THICKNESS (CM) - .038
( TEST DIRECTION - TRANS.

SOURCE - NAS-8-27139 -< 0
I STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) m

STRAIN (PCT.) TIME (FOURS) --
.025 1. .*010 .1 o
.038 2.4 .005 .4
.045 4*5 6015 1.0 .315 .4
.067 11.5 .020 19.1 .030 .6
.110 22.0 .030 24.8 .045 1.5
.150 30. * 0 55 42.5 .060 3.5

0 .222 46.5 .065 49.7 .090 6.5
.245 54.0 .075 67.7 .150 13.3
.340 69.0 .085 72.9 .215 21.5
.390 78. .090 90.5 .235 25.2

.095 97.0 .278 30.5
0. .100 101. .408 46. 0

z

,,



ALLOY - rn NICP ALLOY - TO NIC ALLOY - TO NTCRSTRESS MPA) - 32.4 STRES (MPA) 34.5 STRESS (MPA) - 34.TEMP. (KELVI) - TEMP. (KELVIN)LVIN) 16 TEMP. (KELVIN) 1366THICKNESS (CM) - .025 THICKNESS (CM) .025 THICKNESS (CM) - 25 mTEST DIRECTION - TANS. TEST DIRECTICN - TRANS. TEST DIRECTION - TPANSSOURCE - AS- AS--1558 SOURCE - 4AS-3-15558 SOURCE - NAS-3-15558 -I

STRAIN (PCT.) TIME (HOUfS) STRAIN (PCT.) TIME (POURS) STRAIN (PCT.) TIME (HOURS) -

o .020 .1 .o015 .2O .025 .3 .015 .4.03C .4 .030 .4 .025 1.2 Z m.045 1. .035 .5 .100 5.4 rn.060 5.8 .035 1.6 .095 10.6 c 2.O0C lb.5 .040 3.4 .220 20.9*090 25.1 .065 9.3 .235 29. *110 4.5 .090 18.5 .320 46.9.120 49.4 .130 27.9 .355 53.4
S.150 64.4 135 28.0 .445 7G.155 69.7 .5 44.1 .495 77.2.205 89.1 .200 51.7 .605 93.1.270 114,9 .295 68.0 .635 98.2.335 75.E .8 5 125.9ALLOY - TO NICR .415 91.8STRESS (MPA) - 34.5 *475 96.5TEMP. (KELVIN) - 1366 .630 115.5 'C .O THICKNESS (CM) - T051 ALLOY - TD NICR ALLOY - TO NICR mTEST DIRECTION - TPAS• STRESS (MPA) -35.9 STRESS (MPA) 36.5SOURCE - NAS-3-1555a TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366THICKNESS (CM) - .051 THICKNESS (CM) - .051

TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.STRAIN (PCT.) TIME (FOUPS) SOURCE- NAS-3-15558 SOURCE- NAS-3-15558

S.010 1 STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)
5 010 .2

*.020 .3
.035 .4.015 .010 .2.040 3.3 .010 .2 015 .4. 707010 •3 .015 .4b.070 7.2 .30C 1.C .015 .4.090 7.7 .045 3.4 .u2 1.5
.105 45.1 .050 510 . C2.411540 5. 1.00 0.3.20115 68 I .075 22.2 *10j 1.6*140 875.7 .080 30.2 .105 27.0
S145 2 .115 47.7 .145 43.2*145 92.9 *120 54.2 .15% 50.5.150 11399. .135 69.3 .190 67.7S113130 75.4 .195 75.1 I

.150 92.9 0225 1 ..

.160 120.1 j
4,14



ALLOY - TO NICR ALLOY - TO NICP ALLOY - TrS NI'ICR
STRESS (MPA) - 37.9 STRESS (MPA) - 39.3 STRESS (MPA) - 39.TEMP. (KELVIN) -136 TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1 6rTHICKNESS (CM) - .325 THICKNESS (CM) - .025 THICKNESS (CM) - .351 m

TEST DIRECTION- TRANS, TEST OIRECTICN - TRANS. TEST DIRECTION - TRANS.SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 SOURCE - N.AS-3-1558 >
rO

STRAIN (PCT,) TIME (HOURS) STRAIN (PCT.) TItlE (FOURS) STRAIN (PCT.) TIME (HOURS) O" -4 0( .. -n

.010 .1 .31 .1 .010 .1
S02003 .2 .015 .3 > m.025 .3 *030 .3 .020 .5 z m.030 .5 .040 .5 .030 1.7 m -.030 1.3 .040 1.7 .035 3.2

S.105 17. CC75 5.8 .360 7.7
.105 24.?7 125 11. 2 .085 19.6
S150 41.5 .120 22.C .095 26.8
0165 49, 125 30.3 .140 43.6.230 65.2 *135 35.9 .155 50.2*245 73.0 *155 46.0 190 69.1
S315 87.6 .165 53,9 .210 74.9 C
.335 95.5 .185 69.9 .290 92.5
S420 1.1.6 .200 77.8 .315 98.9*220 94.3 .460 119.8

*225 101.8225ALLOY 101.8 ALLOY - TO NICR <ALLOY - TO NICP STRESS (MPA) - 41.4 mH STRESS (MPA) - 41.4 TEMP. (KELVIN) - 1366 MTEMP. (ELVIN) - 136 ALLOY - TO NICR THICKNESS (CM) - 1351 "THICKNESS (CM) - 132 STRESS (MPA) - 41.4 TEST DIRECTION - TANS.ETHICKNESS (CM) - 25 TEP (KELVIN) - i1366STEST DIRECTION - TRANS, THICKNESS (CM) - J51 SOURCE- NAS-3-15558 -
SOURCE - NAS-3-15558 TEST DIRECTION - TRANS.

STRAIN (PCTSOURCE - NAS-3-1555 8 STRAIN (PCT.) TIME (HOURS)STRAIN (PCT.) TIME (HOUPS)0 STRAIN (PCT,) TIME (HOURS) .015 .1

.015 . .25 .2
•20 .2 ..

4.030 .3 .010 .2 .015 .3.. 30 005 .4 .030 1.0.030 13 .005 .5 020 .4.070 2.1 *3 a4 .030 5.0.070 3.8 *43C 2.3 .025 3.4
b .110 9.3030 3.7 030 5.0

S.190 19.5 .045 13o1 .020 5,7S9c 19. 070 025 11.3.225 27.8 .070 2.4 .060 22.4.260 46.2 090 27 06 29.9.25580 6851. 13 5.2 09 34.4.285 75.1 .160 69.3 .110 47.9 I.295 91.8 .180 75.6 .115 53.8.295 91.8 .220 92.3 .165 7..
.335 121. 2104 225 93.

.260 4 C2.1 .



ALLOY - TD NICR TALLOY ALLOY - 1') NICR
STRESS (MPA) - 4+.' STRESS (MPA) - 44.8 STRESS (MPA) - 4.3

TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366 5
THICKNESS (CM) - .051 THICKNESS (CM) - .22F THICKNESS (CM) - .25
TEST DIRECTICh - TRANS. TEST DIRECTION - LONG. TEST DIRECTION - LONG

SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 r -
oz

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIiE (HOURS) STRAIN (PCT*) TIME (HOURS) - 0

0 .005 .3 .015 .1 .010 .1 > M
o .lr 2.7 .025 .3 .015 .2 2 m

.025 7.7 .035 ,7 .015 1. m

.055 19.5 .045 1.6 *020 9** r
I .075 26.9 .045 7.4 .025 2.5 c'Z
r .07 32.5 .55 19.2 .045 8.1

.090 42.6 .065 27.1 .055 18.3
0 .115 50.9 .070 42.2 .080 26.2
0 .160 69.2 .080 51.1 .120 42.2
C 18 74.9 .085 68.7 .155 51.1
t .225 91.2 .095 74.9 .235 66.5 C,

.250 98.7 .100 8.4 .255 74.

.330 114.8 .110 95.4 .340 88.7
.130 112.~ .340 95.1

SALLOY - TD NTC .400 113.0 =
STRESS (MPA) - 48.3 ALLOY - TO NICR ol

~ TEMP. (KELVIN) - 1366 STRESS (MPA) - 48.3 NIC
o THICKNESS (CM) - .- 25 TEMP. (KELVIN) - 1366 ALLOY - T NCR m
C TEST DIRECTION - TRANS. THICKNESS (CM) - .G5i STRESS (MPA) - 66 .3c

SOURCE - NAS-3-15559 TEST DIRECTION - LONG. TEMP. (KELVIN) - 1366 o
SSOURCE - NAS-3-15558 THICKNESS (CM) - .63 m

TEST DIRECTION - LONG.
STRAIN (PCT.) TIME (FOURS) SOURCE - GE-PVT-5132

STRAIN (PCT.) TIME (POURS)

S.015 .1 STRAIN (PCT.) TIME (HOUPS)

.010 .3 .020 .1

.035 .4 .010 100

.035 .5 .020 .3 2100 2.5030 I.C .030 .4 .200 .5

.075 3.2 .030 500 63

.095 7. 7 .030 5.6

.140 17.6 .055 10.8

.165 27.6 .050 21.9
r .195 44.0 .070 29.8

.215 51.6 .070 47.5 2

.250 69. .075 53.6

.255 75.4 .100 77.4

.285 91.6

.300 99.3 *ERROR' 84 OUTPUT FILE LINE LIMIT EXCEEDED.

SENSED BY OUTPTC
CALLED 3Y CONVRT AT 217 ( 117)

,



ALLOY - TDO rIC ALLOY - TO 11ICP ALLOY - TFD NICRSTRESS (MPA) - 51 7 STRESS (MPA) - 51.7 STRESS (MPA) - 51.7
TEMP. (KELVIN) - 13 TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 13EiTHICKNESS (CM) -25 THICKNESS (CM) - .25 THICKNESS (CM) - .025TEST DIRECTION - LONG. TEST OIRECTION- LONG. TEST DIRECTION- LONG.SOURCE - NAS-3-155 SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 r-

rO
STPAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (POURS) STRAIN (PCT.) TIME (HOURS) O"u -n

.010 . .010 .1 .025 .1> r.015 .2 .020 .2 .030 .2 m

.025 .4 .030 .4 .055 1.0 cn

.0 25 5 .080 1.1 .075 1,8.030 1.5 130 4.8 .085 3.7.035 2.6 .145 6.3 .115 8. 3S.050 5.9 .245 13.1 .165 218.S.060 10.3 .325 21. .190 27.5. 080 22. 3 .370 3c .1 5.5 42.9.ao 29.5 .440 54.0 .285 51.3 co

.150 71.8 .51 94.9 .590 92.7.160 77.6 .525 132.u .605 96.7
8 .195 9552

2 2101.6.1,210 101.6 .840 12.7 rnm
ALLOY - TO NIOR ALLOY - TO NIC SORSSTRESS MPA) 51.7 STRESS (MPA) 55.2 STRESS (MPA) - 58.6TEMP. (KELVIN) - 136E TEMP. (KELVIN) - 36 TEMP. (KELVIN) -1366 -1THICKNESS (CM) - .152 THICKNESS (CM) - .025 THICKNESS (CM) .152TEST OIRECTIOI - LONG. TEST DIRECTION - LCNG. - LONG.

SOURCE - GE-PVT-5132 SOURCE - NAS-3-15553 SOURCE - GF-PVT-5132

STRAIN (PCT.) TIME (HOUPS) STRAIN (POT.) TIME (HOURS) STRAIN (POT.) TIME (I-OUDS)

.100 .2 .030 .1 .10 .1I, .2O i•. .035 .2 .200 .2.500 16.c .035 .3 .500 2.0
.040 .4
.070 .5

. .070 1. 2
.085 5.4
.12 0 21.1 Z
13& 29.3 W

.155 47. 3

.150 53. 5
.16C 70.1
.175 77.
.190 93.9
.190 97.(
.205 122.C



ALLOY - T; NICR ALLOY - Tr NICR ALLOY - T NICRSTRESS (MPA) - 62.1 STRESS (MPA) - 62.1 STRESS (MPA) - 65.5TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366 TEMP. (KELVIN) - 1366THICKNESS (CM) - .25 THICKNESS (CM) - .051 THICKNESS (CM) - .25 m
TEST DIRECTION - LCNG. TEST OIRECTICN - LONG. TEST DIRECTION - LONG.SOURCE - NAS-3-1555 SOURCE - NAS-3-15559 SOURCE - NAS-3-15558 r

rO
STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (FOUPS) STRAIN (PCT.) TIME (FOURS)

.015 .1 .015 .1 .030 .4 o
S.025 .3 .030 .2 .043 1,a > m.035 .4 .030 *4 .035 2.0 2 m040 .5 .030 .5 .050 3.7 r*045 1.1 ,045 5.6 .070 9.1 m Z.085 5.4 .030 10.,4 .110 20.0
.110 10.6 .030 20.L .135 28.1.150 20.2 .04C 29.3 .135 32.7
*170 29.4 .045 35.0 .170 51.6e .183 35.7 .030 44.4 .200 67.1S.210 4F6.9 .030 53.8 .240 75.4b .235 53.3 .045 77.6 .325 93.3
.280 71.7 .045 93.9 .355 103.3.305 77.5 .055 1'1.3 9

4A:.345 92.9
S370 100.1

ALLOY - TD NrCP m mLLOY - TNICALLOY - TO NICP STRESS (MPA) - 724a STRESS (MPM) - ) 68.9 TEMP. (KELVIN) - 136 ITEMP. (KELVIN) - 1368.9 TEMP. (KELVIN) -1366 THICKNESS (CM) - 81
THICKNESS (C) - 166 THICKNESS (CM) - .063 TEST DIRECTION - LONG.TEST DIRECTION - NG51 TEST DIRECTION - LONG. SOURCE- MO--INTL

SOURCE - NAS-3-155 SOURCE - GE-PVT-5132 SOURCE MAC ITL

STRAIN (PCT,) TIME (FOUP) STRAIN (PGT*) TIME (HOURS) STRAIN (PCT.) TIME (HOUS)

S.02C .100 .2 .100 2.0
.010 . .203 .4 20

0010 .3 .50C -.
S015 .4

02 0 .5T ALLOY - TD NICP ALLOY - TO NICR0206. STRESS (MPA) - 79.3 STRESS (MPA) - 89.5.04C 19.2 TEMP. (KELVIN)-- 1366 TEMP. (KELVIN) - 1366.050 25.3 THICKNESS (CM) - .381 THICKNESS (CM) - .081.070 49.0 TEST OIRECTION - LONG. TEST DIRECTION - LONG. z.105 66.9 SOURCE - MDAC-W-INTL SOURCE - MDAC-W-TINTL.120 72.9
•165 95.6.175 94.6 STRAIN (PCT.) TI'E (FOURS) STRAIN (PCT.) TIME (CFOUS).290 119,2

.100 3.0 .100 .4.100 43. olGC0 .1



ALLOY - TD NTCR ALLOY - TO NITCR ALLOY - TO NICR 
STRESS (MPA) - 9E.5 STRESS (MPA) - 1^3.4 STRESS (MPA) - 27.6TEMP. (KELVIN) - 1"66 TEMP. (KELVIN) - 136 TEMP. (ELVIN) - 12

THICKNESS (CM) - .81i THICKNESS (CM) - .091 THICKNESS (CM) - .1'2 m
TEST DIRECTICN - LONG, TEST DIRECTION - LONC. TEST DIRECTION - TRANS.

SOURCE - MDAC-W-INTL SOURCE - MDAC-W-INTL SOURCE - GE-PVT-462 r-
rO

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (hOURS) STRAIN (PCT.) TIME (HOURS) o

S.100 1.6 .100 .3 .100 12.0 V:
.200 3.5 .200 1.0 .200 57.0 Z m* 100 143 10 0 m "m

ALLOY - TO NICR .200 3. .200 4200.0 r-
STRESS (MPA) .500 #500.0 c ZSTRESS (MPA) - 34.5 ALLOY - TO NICR

TEMP. (KELVIN) - 1422 STRESS (MPA) - 17,2 ALLOY - TD NICRTHICKNESS (CM) - .102 TEMP. (KELVIN) - 1478 STRESS (MPA) - 17.2TEST DIRECTION - TRANS* THICKNESS (CM) - .025 TEMP. (KELVIN) - 1478SSOURCE - GE-PVT-4662 TEST DIRECTION - TRANS. THICKNESS (CM) - .063
§ SOURCE - NAS-3-15558 TEST DIRECTION - TRANS.

SOURCE - GE-PVT-51 32STRAIN (PCT.) TIME (IOURS)
STRAIN (PCT.) TIME (HOUPS)

100 STRAIN (POT.) TIME (OUSTRAIN (PCT.) TIME (FOURS)
S200 9. .030 .10 *100 3150,. .020 .3 .100 1.0 m.025 .4 .200 2710 -

.045 1.4 .500 190. oC ALLOY - TO NICR .040 3.4
STRESS (MPA) - 18.6 .065 8.8 ALLOY - T NICR --4

TEMP. (KELVIN) - 1478 *105 19.7 STRESS (MPA) - 18.6
THICKNESS (CM) - .325 .111 27.4 TEMP. (KELVIN) - 1478
TEST DIRECTION - TRANS. .150 43.4 THICKNESS (CM) - .0250 SOURCE - NAS-3-15558 .165 51.4 TEST DIRECTION - TRANS.

.235 71.5 SOURCE - NAS-3-15558

.240 75.4STRAIN (PCT.) TIME (HOURS) .310 91.5
S.335 99.4 STRAIN (PCT.) TIME (HOURS)

,0..- 0 .10 .3 
.2S.0045 .5.010 .2

s 01* 1.1 .010 .3
.010 3.9 .005 .43 ,9. .015 .5
7- 278 .015 1.0 z

27 44.4 .020 2.2 >
Si..8 025 2.7 c>

*, .040 7.3
7..~ .050 20.2

* - . . 075 27.0
.105 44.7
.125 68.8
.150 74.9
.185 90.3
.225 95.7
.265 117.3



ALLOY - T3 NICR ALLOY - TO NICR LLOY - T
STRESS (MPA) - 2 .7 STRESS (MPA) - 2 .7 T (PA) 7- .

TEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478 T . ( LV -
THICKNESS (CM) - .025 THICKNESS (CM) - .025 THIC ' ( ) - om
TEST DIRECTION - LONG. TEST DIRECTION - TRANS. T: T CT( - .

SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 SJ C - S-o3-15 4
rO

STRAIN (PCT.) TIME (HOUP S) STPAIN (PCT,) TIME (OURS) ST'IN (PCT.) T",E (fo, ')
n10

.020 .1 .015 .1 .010 .1
0 .020 .2 .020 .2 .010 .2 > m

.020 .3 .030 .4 .015 .3 Z m

.04C 1.0 .030 ,5 ,025 •4 ".030 2.0 C .030 1.0 .*030 1.0 , z

.035 3.5 .035 7.C .035 19.0

.375 8.0 .090 18.6 *040 24.7
S .115 19. .065 26.3 .050 42.8

.165 27.1 .065 42.4 .035 48,8
• .290 50.5 .090 5,.3 .050 67.2
.305 55.4 .115 70.5 .060 90.3
.395 67.3 .145 90.5 075 96.8 _
.450 75,3 .165 98,4 .080 1iC.
.555 92.8 .225 113.0

ALLOY - TO NICR ALLOY - TO NICR ALLOY - TO NICR Co
STRESS (MPA) - 22.1 STRESS (MPA) - 22.1 STRESS (MPA) - 23.4 m"

TEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478 -"
THICKNESS (CM) - .025 THICKNESS (CM) - .051 THICKNESS (CM) - .051 o
TEST DIRECTION - TRANS. TEST DIRECTION - TRANS. TEST DIRECTION- TRANS.

SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 SOURCE - NAS-3-15558

0 STRAIN (PCT.) TIME (HOUPS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

.025 .2 .005 .1 .005 .1

.020 .3 .015 .2 .015 .3

.015 .5 .010 .3 .015 .4

.025 1.0 .015 .5 .025 .5

.030 6.8 .020 .7 .025 1.0

.110 18.6 .020 1.3 .035 2.0

.125 24.8 .025 1.8 .040 8.0

.190 42.2 .025 7.1 .065 19.3

.210 48.5 .060 18.7 .070 27.1
.300 64.5 .050 25.u ,110 43.9 Z
.300 72.2 .365 41.7 .135 51.4
.370 91.4 .055 50.2 .170 67.9
.380 96.3 .070 75.3 .165 75.2
.430 113.3 .095 91.2 .200 91.2

.080 97.1 .325 128.0

.100 11i.8 -
11J08



ALLOY - TD NICR ALLOY - TO NTC? ALLOY - TC NICR 
STRESS (MPA) - 24.1 STRESS (MPA) - 24.1 STRESS (MPA) - 24,1

TEMP, (KELVIN) - 1478 TEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478THICKNESS (CM) - .025 THICKNESS (CM) - .051 THICKNESS (CM) - .152 mTEST DIRECTION - TRANS. TEST DIRECTION - TRANS. TEST DIRECTION - TRANS.SOURCE - NAS-3-15558 SOURCE - NAS-3-15558 SOURCE - GE-PVT-5132 _
rO

STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (COUtS) STRAIN (PCT.) TIME (COURS) 0Z
0 -I,I C/.005 .1 .010 .1 .200 .1 -

S.035 .3 .035 .2 .500 .6 mZ005 .4 .020 .4 Z m
*015 2.5 .035 1.2 ALLOY - TO NICR m -
.015 8.3 .035 3.1 STRESS (MPA) - 24.1.055 17.1 .05C 5.8 TEMP. (KELVIN) - 1478
.070 26.7 .065 11.8 THICKNESS (CM) - .152.110 42.6 .075 22. 0 TEST DIRECTION - TRANS.
.135 50.6 .075 30.2 SOURCE - GE-PVT-5132
.210 66.9 .090 44.8
.230 74.5 .105 54.5
.275 89.4 .0b0 7G.5 STRAIN (PCT.) TIME (FOURS)
.295 95.5 .120 78.2
.370 118.0 .14G 93.9

r .455 137.1 .145 101.2 .100 .3
A Y T C.200 .7 oz
ALLOY - TO NICR ALLOY - TO NICR .500 3.00 STRESS (MPA) - 25.5 STRESS (MPA) - 27.6 mTEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478 ALLOY - TO NICR

THICKNESS (CM) - .051 THICKNESS (CM) - .325 STRESS (MPA) - 27.6 oC TEST DIRECTION - TPANS. TEST DIRECTION - LONG. TEMP. (KELVIN) - 1478 mSOURCE - NS-3-15558 SOURCE - NAS--15558 THICKNESS (CM) - .038 -
TEST DIRECTION - TRANS.

SOURCE - NAS-8-27189
0 STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (IOURS)

0 STRAIN (PCT.) TIME (hOURS).015 .2 ,010 .1
.010 .4 .025 .2*010 .5 .025 .3 *045 1..015 1.3 *025 .4 .065 1.8.030 2.3 .020 .5 .100 3.4.025 7.5 *035 7.9 .215 7.5
.02C 4.5 .060 8.7 .290 10.4U .035 5.4 .060 21.5.055 11.0 .170 42.7
.065 22.6 .175 42.8 Z.055 33.0 .195 64.1.070 45.4 .255 74.7.085 53.8 .350 94.3.090 69.8 .460 13.080 78.1
.110 93.9
.105 98.1
.165 129.3



ALLOCY - T, NICR ALLOY - T) NICR ALLOY - TO NICR
STRESS (MPA) - 27. STRESS (MPA) - ?7.6 STRESS (MPA) - 27,6
STEMP (KELVIN) 1478 TEMP. (KELVIN) 1- 473 TEMP. (KELVIN) - 1478

THICKNESS (CM) - .351 THICKNESS (CM) -. 63 THICKNESS (CM) - .152 m
TEST DIRECTION - ToAS TEST DIRECTION- TRANS, TEST DIRECTION - LONG .

SOURCE - NAS--1555 SOURCE - GE-PVT-5132 SOURCE - GE-PVT-54 32 >

STRAIN (PCT.) TIME (POUPS) STRAIN (PCT.) TIME (FOURS) STRAIN (PCT.) TIME (HOURS) -
-nTi

S .005 .1 .200 .1 .100 .5 M
0 .0.5 1:4 50i .4 .200 1.5 > m

10 05 .0 .500 5.5 m
.010 3.5S ALLOY - TO NICP m
.035 19.9 STRESS (MPA) M 717 STRESS (MPA) 33.1 cz
055 27.6 TTEP. (KELVIN) . (KELVIN) 1471
120 44.9 THICKNESS (CM) .325 THICKNESS (CM) - .025
140 51.4 TEST DIRECTION - LONG. TEST DIRECTION - LNG.S195 69.0 SOURCE - NS-3-15558 SOURCE NS-3-15s58

S200 75.5

.49G 96.8 STPAIN (PCT) TIME (FOURS) STRAIN (PCT.) TIME CIOURS)

.610 118.5 _7

.020 3.5 .10 .-

.01o . .01 .

.020 1.2 .015 .2
030 2,4 025 . m
030 025 .
.055 11.0
.115 28.8 040 1.8 o
.170 44.2 060 18.8
.215 52.7 24.9
.315 68, 7 135 42.3
.360 76.09 10 8.7
.425 92.7 .225 64.725 92.7 270 7203.425 97.°5 .390 91.6
.457 128. 1 .42 9.5

ALLOY - TO NICR ALLOY - TO NICR 113.5
STRESS (MPA) - 34.5 STRESS (MPA) - 37,9

, TEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478
THICKNESS (CM) - .38 THICKNESS (CM) - .152
TEST DIRECTION - TRANS. TEST DIRECTION - LCNG.

A SOURCE - NAS-3-271-89 SOURCE - GE-PVT-5132

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOU3S)

.170 .6 .100 .2

.286 12 .230 .5
.50% 3.



ALLOY - TD ICR ALLOY - TI NICR ALLOY T[- TIu NICP
STRESS (MPA) - 39.3 STRESS (MPA) - 1.4 STRESS (7PA) - .

TEMP, KELVIN) t478 TEMP. (KELVIN) -1478 TEMP. (KELVIN) - 1471
THICKNESS (S (C- THICKNESS (CM) - L.C  THICKNESS (CM) - .152
TEST DIRECTION - LONG. TEST IRECTIN LONG. TEST OIECTIO - LONG.

SOURCE - NS-3-15558 SOURCE - Gr'-PVT-512 SGURCE - GE-PVT-5132

STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (IOUPS O
3 -n

S.005 .1 .200. .1 . 2 0u .1 o
S.010 .3 500 .3 > m

.020 .5 L 0 T Zm020 ALLOY - T NICP ALLOY - TO NICR m m
2050 STRESS (MPA) - 41.4 STRESS (MPA) - 427

•.050 9,2 TEMP. (KELVIN)- 1478 TEMP. (KELVIN) - 1478 cn
P0 27.1 THICKNESS (CM) - .152 THICKNESS (CM) - .051

091 43.8 TEST DIRECTION - LONG. TEST DIRECTION - LONG.
S.100 51.4 SOURCE - GE-PVT-5132 SOURCE - NAS-3-15558

C .110 67.8
.110 75.2 STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (IOURS).120 91.1
S.160 127.9

.1O .1 .020 .2
A .200 .2 .020 .3

.500 1.0 .015 .4-
.035 1.0
.040 2. r mr
.035 3.2
.070 9.5 o
.080 1 . 8
.085 33.3
.095 51.8
S.190 67,7
.225 75.5

.455 99,7

Az
,,



PAE NAS-1-11774
PrREDICTION OF CREEP IN PHASE I

METALLIC TPS PANELS SUMMARY REPORT

APPENDIX F-2

TDNiCr SUPPLEMENTAL STEADY-STATE CREEP TESTS (RAW DATA)

This portion of Appendix F presents the results of the supplemental steady-

state creep tests. All strains shown are total plastic strains. For informational

purposes the elastic strains are presented below for the individual tests in order

of their appearance in this section. Elastic strain "A" was measured at the start

of the test while elastic strain "B" was measured at the conclusion of the test.

SPECIMEN # ELASTIC STRAIN, %

A B

TD02L .055 .089

TD03L .045 .065

TD11T .071 *
TD12T .054 .042

TD13T .064 .092

TD21L .117 .121

TD23L .104 .121

TD24L .102 .095

TD25L .039 .027

TD26L .118 .058

TD27L .056 .030

TD28L .032 .028'

TD29L .052 *

TD30L .032 .034

TD32L .062 .065

*Specimen failed

F-2-1

MPdCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST



a--

rOALLOY - TD-NI-CR ALLOY - TJ-NI-CR ALLOY - TD-NI-CR o Z
STRESS (MPA) - 110.3 STRESS (MPA) - 34.5 STRESS (MPA) - 62I 0TEMP. (KELVIN) - 1u89 TEMP. (KELVIN) - 1200 TEMP. (KELVIN) - 1200 -n

THICKNESS (CM) - .025 THICKNESS (CM) - . 25 THICKNESS (CM) - u25 n
SPECIMEN NO. - T D21L SPECIMEN NO. - T 025L SPECIMEN NO, - T 024L > m

2 m
STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)

.031 ol .03 . .003 .1S.050 .2 09 1 .2 .008 .2.069 03 .01l .3 a009 .3
*096 .5 00338 .5 .01 .5.059 .8 .005 .8 o.01 .8 C.L48 10 .003 10 .012 1.6.051 1, 5 .008 1.5 .313. 1.5.063 20C .012 2.3 o017 2, .a ea71 l .0 15 3.0 .516 3oC.073 .o 0 608 4.j .024 4.0 078 5. .008 5.0 .029 5.0. 090 13. .008 10.0 .025 10.0 m.092 15.0 .006 66.0 .023 1.100 2.0 .002 71.0 . 026 20. o.103 25.0 .032 76. .029 25.0.106 2 9 .u -. 032 76.3 .029 30.0S104 37.0 .005 81.0 .037 35.0.109 48 . .005 90.0 .030 42.0S.17 45.0 .015 98.0 .324 45.0S.108 50.0 .007 1z3.0 .020 50.C.110 53.0 .012 10 6 .L .020 55.0S107 61.0 .012 114.0 .012 59.0.112 65.0 .007 119.0 .012 66.C
t 112 65.6 .313 124.0 .035 71., .115 76.0 .013 129.3 .030 76.0S110 85.0 -.001 138.0 o028 81.b116 90,0 .011 144.0 .037 90.3* .125 95.0 .013 149.0 o026 98.3.117 100.0 .020 154.0 .031 12. L.124 157.0 .011 169.0 .030 106.0.132 16,~ .013 173.0 .030 185., Z*308 177.0 .022 195.0.008 234.0 .029 205.0

.009 258.-



I-

ro

ALLOY - TO-NI-CR ALLOY - TO-NI-CR 0 Z
STRESS (MPA) - 62.1 ALLOY - TO-NI-CR STRESS (MPA) - 110.3 -

TEMP. (KELVIN)- 120, STRESS (MPA)- 62,1 TEMP. (KELVIN) - 1200
THICKNESS (CM) - .r25 TEMP. (KELVIN) - 120 THICKNESS (CM) - .025

a SPECIMEN NO, - T 012T THICKNESS (CM) - ,i63 SPECIMEN NO. - T 023L > m
i SPECIMEN NO. - MOAC-E-TD2L z m

H STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) r-
STRAIN (PCT.) TIME (HOURS)

S.001 .1 .006 .1
O .004 .2 *009 .83 .030 .2
C .002 .3 .916 .170 .040 .3

.a02 .5 .026 .250 .052 .5

.002 .8 .026 .5, .72 .8

.002 1.0 *C22 .750 .083 1.0c

.004 1.5 .*28 1.00 .104 1.5

.019 2.0 .031 1.5"1 .125 2.0
S.023 3.0 o34 2. r' 0 135 3.C 0

.023 4.0 .942 3.00 .157 4.0
S.022 5.0 .37 4.0 .179 5.0
.021 13.u .039 5.000 .263 15.0 m _

S .021 16. *.44 7.5'J .290 20.0 -
.008 21.0 .037 15.0 .294 25, 0 C
.006 26.0 .037 3 .02o .312 3.0
.029 29.5 *F49 25°.00 .350 40,0

S .C39 37. *0953 3r.00 .357 45.0
.026 42.0 .047 39.00 .375 5,0
.018 47.0 *036 45.0C0 .384 55.0
.016 52.0 .052 5, CJ3 4O 63.L
.025 61.0 .065 55.00O .403 6 5 ..
.021 67.0 .059 70.030 .416 70.0
.032 72.0 .68 74.4 .422 75.0
.035 77.0 .067 78.00 .442 79.0
.031 133.C .971 135.010 .452 87.C
.034 141.0 .076 1F9.0GJ .461 90,0

b .034 146.C .089 183.0 0 .467 95.
* .041 15u 0 .084 217,071 .473 10L.G

S.39 158.0
.031 166.0
.035 17.
.035 182.0
.041 190.0
.041 191. -

-I,,.1



rO

ALLOY - TO-NT-CR ALLOY - TO-NI-CR ALLOY - TD-NI-CR 0 Z
STRESS (MPA) - 110.3 STRESS (MPA) - 17.2 STRESS (MPA) - 34.5 4 0

TEMP. (KELVIN) - 120t TEMP. (KELVIN) - 1339 TEMP. (KELVIN) - 1339 
0 THICKNESS (CM) - .u25 THICKNESS (CM) - .*25 THICKNESS (CM) - .025 0

o SPECIMEN NO. -T DiT SPECIMEN NO. - T 028L SPECIMEN NO. - T 027L> m
Z m

SSTRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) u

0 .053 .1 .007 .1 .005 .1
0 .077 .2 .013 .2 .001 .2
C .094 .3 .015 .3 .009 .8

*117 .5 .16 .5 .010 1.0
.145 .8 .018 .8 .312 1.5
.159 1.6 .019 1.0 .012 2.0
.175 1.5 .U20 1.5 .009 3.0
*191 2.0 .018 2.0 .007 4.0
.207 3.u .018 3.0 .312 5.0
.233 4.0 .020 4.L .035 13.0
* .236 5.0 .020 5.0 .043 20. MC
.333 13.0 .018 19.0 .057 25.0 m
.346 b16.5 .017 25.0 .065 29.0 Co
.397 21.5 .018 43.0 *091 37.0

.019 45. .094 40.4 -4

.019 5. $ .090 45.0

.021 55.0 .099 5G0.

.022 60.0 .108 61.0

.026 116.0 .107 85.0

.326 120.0 .112 90.3
o .Z 28 125.0 .140 95.0

ALLOY - TO-NI-CR o028 130.0 .153 100.0
STRESS (MPA) - 1103 .028 132.0 .122 157.0

TEMP. (KELVIN) - 1202 .324 14;.0 .130 160.0
THICKNESS (CM) - .~063 324 145.0 .135 165.0

SPECIMEN NO. - MOAC-E-TDIL .030 150.0 .139 170.0
.330 155.0 .136 173.0
S024 165.0 .134 181.0

STRAIN (PCT.) TIME (HOURS) o016 170.0 .145 185.0
o030 175.0 .141 190.0
.030 180.0 .136 195.0 z

*08 *83 .020 190.L .141 197.0 0
.136 .170 o027 195.0 .135 235.C I
.233 .250 .327 20 .

4



rO

ALLOY - TC-NI-CR ALLOY - TD-NI-CR C Z
STRESS (MPA) - 62.1 STRESS (MPA) - 62,. AL OY - TO-NI-CR - 0

TEMP. (KELVIN) - 1339 TEMP. (KELVIN) - 1339 STRESS (MA) - 62.1
THICKNESS (CM) - .325 THICKNESS (CM) - .325 TEMP. (KELVIN) - 1339 -

o PECIMEN NO. - T D26L SPECIMEN NO. T 013T THICKNESS (CM) - .63 m
SPECIMEN NO. - LDC-E-TO3L2 m

'-STRAIN (PCT.) TIME (HOURS) STRAIN (PCT.) TIME (HOURS)
STRAIN (PCT.) TIME (HOURS)

S.002 .1 .013 .1
O .03 .2 .017 .2 0f13 *083
C .#04 .3 .025 .3 .028 .173

.005 .5 .047 .5 *.39 *250

.007 .8 .055 .8 .048 .500 C

.009 1.0 *066 1 55 .750

.017 1.5 073 1.5 .J65 1.0130

.020 2 .77 2.0 .071 1.50 .1"

.022 3.C .098 3,U .078 2.0r

.024 4.0 *111 4.L *i0 3.00 0

.028 5 0 *47 5 12 .00 r
037 1u. 0 *186 10.0 e130 5.00 m
.066 15. .245 15.0 .148 10.0)0 1
S .097 71.0 .342 24.0 .225 15.0 C
.098 75.0 .396 3J*. .482 24.003
.093 8.O .451 35.0 *85 29, 0I

a .102 85.u .476 4j.0
.119 93.c .946 96.0
.123 95.C

o .131 10.



--

rO
ALLOY - TO-NI-CR ALLOY - TO-NI-CR ALLOY - TO-NI-CR 0 ZSTRESS (MPA) - 17.2 STRESS (MPA) - 27.6 STRESS (MPA)- 34.5 ~0TEMP. KELVIN) - 1478 rEMP. (KELVIN) - 1478 TEMP. (KELVIN) - 1478 CASTHICKNESS (CM) - 1425 THICKNESS (CM) - .025 THICKNESS (CM) - .25o SPECIMEN NO. - T 030L SPECIMEN NO. - T 032L SPECIMEN NO. - T 029L > m

Z m
M STRAIN (PCT.) TIME (HOURS) STRAIN (PCT,) TIME (HOURS) STRAIN (PCT.) TIME (HOURS) Z

.02 .1 .003 .1 .008 .1.004 .2 .005 .2 .011 .2S.006 .3 .006 .3 .011 .3.007 .5 .,12 .5 .012 .5.008 .8 .014 .8 .011 .8.C10 1* .015 1.0 .1i2 1.0 .015 1.5 .018 1.5 .022 1.5l .G16 2. .019 2.C .027 2.6 J-.017 3.u . 23 3.' .025 3.0.318 4.0 .029 4.0 .028 4.0
N0 016 5. .031 5.0 .34 5.0 r.012 1 * .033 10, .033 1. mr

S002 14.0 .040 14.0 .036 15.0S.019 21.0 .043 21.0 .042 27.5.013 25.0 .C46 26.U .042 35.5S *020 30.0 .047 31.0 .55 43.0.017 35. .041 36*0 .054 45.,.017 38.0 .043 45*. .066 5,GL.015 45. .033 5c. .o068 5500S.20 53.? .038 55*0 .069 6.0.013 94.0 090 67.0
.092 70.0
. 114 75.0

z

I
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tPREDICTION OF CREEP IN PHASEI NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

APPENDIX F-3

TD-Ni-Cr CYCLIC CREEP TESTS

(RAW DATA)

This section presents the results of the 12 cyclic creep tests that were

performed on TD-Ni-Cr tensile specimens.

F-3-1
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'P REDICTION OF CREEP IN PHASE I NAS-1-11774
SMETALLIC TPS PANELS SUMMARY REPORT

TDNiCr
Cyclic Creep Data

Cyclic Test Number 1
Alloy Designation TDNiCr
Heat Number TC3875
Supplier NASA-Lewis*
Test Temperature (OK) 1089
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD95L TD96L TD97L TD98L TD93L
Specimen Thickness (cm) .0241 - .0239 .0239 .0241 .0249
Specimen Width (cm) 1.2682 1.2684 1.2684 1.2684 1.2684
Applied Load (Kg) (See Table - Page F-3-4)
Test Stress (MPa) (See Table - Page F-3-4)
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD95L TD96L TD97L

1 Side A .02 .01 .19
Side B .03 .02 .01
Ave. .025 .015 .10

5 Side A .03 .01 (Specimen broke at start
Side B .05 .02 of Cycle 2 and was
Ave. .04 .015 replaced by TD98L)

15 Side A .05 .02
Side B .05 .02
Ave. .05 .02

25 Side A .06 .03
Side B .06 .02
Ave. .06 .025

50 Side A .05 .02
Side B .06 .03
Ave. .055 .025

75 Side A .06 .03
Side B .07 .03
Ave. .065 .03

100 Side A .06 .03
Side B .08 .03
Ave. .07 .03

* Produced by Fansteel Inc. for NASA Lewis Research Center under Contract NAS3-13490.

F-3-2
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",PREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

% Creep

TD98L

Cycle

Number

4 Side A .06
Side B .05
Ave. .055

14 Side A .09
Side B .09
Ave. .09

24 Side A .10
Side B .10
Ave. .10

49 Side A .11
Side B .10
Ave. .105

74 Side A .13
Side B .11
Ave. .12

(Specimen broke at cycle 87 and was
replaced by TD93L)

% Creep

TD93L

Cycle
Number

12 Side A .07
Side B .10
Ave. .085

F-3-3
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'tP REDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

TDNiCr TEST NO. 1

SPECIMEN LOAD-u Kg

TD95L 32.3

TD96L 26.5

TD97L 38.2

TD98L 38.8

TD93L

SPECIMEN STRESS r MPa

TD95L 103.3 (1)

TD96L 85.7 (1)

TD97L 123.6 (2)

TD98L 124.2 (3)

TD93L - (4)

NOTE:

(1) Stress level average for cycles 1 through 88. Cycle 89-100 not recorded.

(2) Specimen broke at start of cycle 2. Material flaw noted in test zone.

Replaced by specimen TD98L.

(3) Specimen broke at cycle 88.

(4) This specimen replaced TD98L in whiffle tree for cycle 89-100. Stress

not recorded - assumed to be same as for TD98L

F-3-4
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"PREDICTION OF CREEP IN PHASE I NAS-1-11774

SMETALLIC TPS PANELS SUMMARY REPORT

TDNiCr
Cyclic Creep Data

Cyclic Test Number 2
Alloy Designation TDNiCr
Heat Number T3875
Supplier NASA-Lewis*
Test Temperature (oK) 1200
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD45L TD47L TD52L TD75L

Test Stress (MPa)
(Approx. Values) 85.5 62.1 108.6 108.6

Pressure (Pa) Constant (< 1.333)

Side A

0

3ide B

Cycle % Creep
Number TD45L TD47L TD52L

1 Side A .07 .01 Specimen broke on ist

Side B .05 .02 cycle and was replaced by

Ave. .06 .015 Specimen TD75L which broke
on Ist cycle)

Broke

NOTE: This test was replaced by Test 3.

* Produced by Fansteel Inc. for NASA Lewis Research Center under Contract NAS3-13490.

F-3-5
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

TDNiCr
Cyclic Creep Data

Cyclic Test Number 3
Alloy Designation TDNiCr
Heat Number TC3875
Supplier NASA-Lewis*
Test Temperature (OK) 1200
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD44L TD80L TD81L
Specimen Thickness (cm) .0246 .0246 .0246
Specimen Width (cm) 1.2667 1.2682 1.2680
Applied Load (Kg) 23.5 18.3 28.0
Test Stress (MPa) 73.8 57.2 87.7
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD44L TD80L TD81L

1 Side A .02 .01 .02
Side B .01 .01 .03
Ave. .015 .01 .025

5 Side A .05 .02 .04
Side B .02 .02 .05
Ave. .035 .02 .045

15 Side A .06 .03 .06
Side B .05 .04 .08
Ave. .055 .035 .07

25 Side A .07 .03 .05
Side B .03 .03 .07
Ave. .05 .03 .06

50 Side A .07 .03 .07
Side B .05 .03 .09
Ave. .06 .03 .08

75 Side A .09 .04 .09
Side B .05 .03 .10
Ave. .07 .035 .095

100 Side A .10 .03 .09
Side B .06 .04 .11
Ave. .08 .035 .10

* Produced by Fanstell Inc. for NASA Lewis Research Center under Contract NAS3-13490.

F-3-6
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P REDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

TDNiCr
Cyclic Creep Data

Cyclic Test Number 4
Alloy Designation TDNiCr
Heat Number TC3875
Supplier NASA-Lewis *
Test Temperature (*K) 1339
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD55L TD57L TD59L TD67L
Specimen Thickness (cm) ,0259 .0259 .0259 .0262
Specimen Width (cm) 1.2682 1.2682 1.2682 1.2680
Applied Load (Kg) (See Table - Page F-3-9)
Test Stress (MPa) (See Table - Page F-3-9)

Pressure (Pa) Constant (< 1.333)

Side A

3ide B

Cycle % Creep
Number TD55L TD57L TD59L

1 Side A .02 .02 .05
Side B .02 .01 .03
Ave. .02 .015 .04

5 Side A .03 .02 .07
Side B .03 .02 .05
Ave. .03 .02 .06

15 Side A .03 .02 .09
Side B .04 .02 .06
Ave. .035 .02 .075

25 Side A .04 .03 .13
Side B .05 .02 .07
Ave. .045 .025 .10

50 Side A .04 .04 (Broke on Cycle 46
Side B .05 .04 Replaced by Specimen
Ave. .045 .04 TD67L)

75 Side A .05 .03
Side B .05 .03
Ave. .05 .03

100 Side A .05 .03
Side B .05 .03
Ave. .05 .03

* Produced by-Fansteel Inc. for NASA Lewis Research Center under Contract NAS3-13490.

F-3-7
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

% Creep

TD67L

Cycle
Number

4 Side A .03
Side B .03
Ave. .03

29 Side A .03
Side B .09
Ave. .06

54 Side A .05
Side B .10
Ave. .075

F-3-8
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PREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

TDNiCr TEST NO. 4

SPECIMEN LOAD ' Kg

TD55L 16.0

TD57L 10.3

TD59L 20.2 (1)

TD67L 20.1

SPECIMEN STRESS nu XPa

TD55L 47.6

TD57L 30.6

TD59L 60.3

TD67L 59.2

NOTE: (1) Specimen TD59L broke on Cycle 46. Replaced by Specimen TD67L.

F-3-9
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' PREDICTION OF CREEP IN PHASE I NAS-1-11774
SMETALLIC TPS PANELS SUMMARY REPORT

TD NiCr Cyclic Creep Data

Cyclic Test Number 5
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (0K) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD35L TD62L TD63L
Specimen Thickness (cm) .0277 .0274 .0277
Specimen Width (cm) 1.2672 1.2685 1.2685
Applied Load (Kg) 12.1 10.4 5.8
Test Stress (MPa) 33.7 29.3 16.1
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD35L TD62L TD63L

1 Side A .03 .01 .02
Side B .02 .00 .02

Ave. .025 .005 .02

5 Side A .03 .01 .03
Side B .03 .00 .02

Ave. .03 .005 .025

15 Side A .03 .02 .04
Side B .02 .01 .04

Ave. .025 .015 .04

25 Side A .06 .01 .04
Side B .06 .01 .04

Ave. .06 .01 .04

50 Side A .10 .02 .05
Side B .08 .02 .06

Ave. .09 .02 .055

75 Side A .10 .02 .05
Side B .11 .02 .06
Ave. .105 .02 .055

100 Side A .13 .03 .07
Side B .13 .02 .07
Ave. .13 .025 .07

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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' REDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

TD NiCr Cyclic Creep Data

Cyclic Test Number 6
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature ('K) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD72L Tf77L TD85L TD102L TD40L TD36L TD43L
Specimen Thickness (cm) .0257 .0254 .0257 .0257 .0257 .0257

Specimen Width (cm) 1.2685 1.2687 1.2680 1.2682 1.2667 1.2667
Applied Load (Kg) (See Table - Page F-3-13)
Test Stress (MPa) (See Table - Page F-3-13)
Pressure (Pa) Constant (<1.333)

Side A

0_O

Side B

Cycle % Creep
Number TD77L TD85L

1 Side A .05 .05
Side B .05 .05
Ave. .05 .05

5 Side A .03 .06
Side B .03 .07
Ave. .03 .065

15 Side A .03 .09
Side B .03 .09
Ave. .03 .09

25 Side A .04 .09
Side B .06 .11
Ave. .05 .10

50 Side A .05 .11
Side B .06 .16
Ave. .055 .135

75 Side A .05 .15
Side B .08 .18
Ave. .065 .165

100 Side A .05 .17
Side B .07 .22
Ave. .06 .195

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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" PREDICTION OF CREEP IN PHASE I NAS-1-11774
Jb METALLIC TPS PANELS SUMMARY REPORT

Cycle 2 Creep
Number TD72L

1 (Broke)

Cycle % Creep
Number TD102L

4 Side A .07
Side B .09
Ave. .08

14 Side A .08
Side B .13
Ave. .105

24 Side A .11
Side B .15
Ave. .13

49 Side A .22
Side B .22
Ave. .22

(Broke on Cycle 56)

Cycle % Creep
Number TD40L

18 Side A .08
Side B .14
Ave. .11

(Broke on Cycle 78)

Cycle % Creep
Number TD36L

13 Side A .11
Side B .09
Ave. .10

F-3-12
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PHASE I NAS-1-11774PREDICTION OF CREEP IN PHASE I
0 METALLIC TPS PANELS SUMMARY REPORT

TDNiCr TEST NO. 6

SPECIMEN LOAD - Kg

TD72L 14.6 (1)
TD77L 7.2
TD85L 12.4
TD102L 14.7 (2)
TD40L 14.5 (3)
TD43L 14.4 (4)
TD36L 14.5

SPECIMEN STRESS - MPa

TD72L 44.0
TD77L 21.8
TD85L 37.5
TD102L 44.2
TD40L 43.8
TD43L 43.4
TD36L 43.6

NOTE: (1) Specimen failed on Cycle 1. Replaced by Specimen TD102L.

(2) Specimen failed on Cycle 57. Replaced by Specimen TD40L.
(3) Specimen failed on Cycle 78. Replaced by Specimen TD43L.
(4) Specimen failed on Cycle 88. Replaced by Specimen TD36L.

F-3-13
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'PREDICTION OF CREEP IN PHASE I NAS-1-11774
SMETALLIC TPS PANELS SUMMARY REPORT

TD NiCr Cyclic Creep Data

Cyclic Test Number 7
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (oK) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD60L -TD61L TD65L
Specimen Thickness (cm) .0259 .0259 .0259
Specimen Width (cm) 1.2680 1.2682 1.2685
Applied Load (Kg) (See Table - Page F-3-15)
Test Stress (MPa) (See Table - Page F-3-15)
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD60L TD61L TD65L

1 Side A .02 .02 .02
Side B .03 .01 .03
Ave. .025 .015 .025

5 Side A .05 .02 .04
Side B .05 .01 .03
Ave. .05 .015 .035

15 Side A .05 .02 .05
Side B .06 .03 .05
Ave. .055 .025 .05

25 Side A .10 .03 .07
Side B .06 .02 .07
Ave. .08 .025 .07

50 Side A .12 .05 .07
Side B .09 .03 .07
Ave. .105 .04 .07

75 Side A .13 .05 .07
Side B .10 .03 .10
Ave. .115 .04 .085

100 Side A .21 .05 .09
Side B .10 .03 .13
Ave. .155 .04 .105

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

TDNiCr TEST NO. 7

LOAD - Kg

SPECIMEN 1st Step 2nd Step
(10 Minutes) (10 Minutes)

TD60L 10.1 12.8
TD61L 4.8 6.1
TD65L 38.6 11.2

STRESS -MPa

SPECIMEN 1st Step 2nd Step
(10 Minutes) (10 Minutes)

TD60L 30.0 38.3
TD61L 14.2 18.3
TD65L 25.8 33.4

F-3-15
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0PREDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

TD NiCr Cyclic Creep Data

Cyclic Test Number 8
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (OK) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD87L TD88L TD100L
Specimen Thickness (cm) .0257 .0254 .0251
Specimen Width (cm) 1.2685 1.2682 1.2687
Applied Load (Kg) (See Table - Page F-3-17)
Test Stress (MPa) (See Table - Page F-3-17)
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD87L TD88L TD100L

1 Side A .05 .01 .03
Side B .04 .02 .05
Ave. .045 .015 .04

5 Side A .07 .02 .05
Side B .05 .03 .05
Ave. .06 .025 .05

15 Side A .10 .02 .05
Side B .06 .03 .07
Ave. .08 .025 .06

25 Side A .11 .03 .06
Side B .06 .03 .07
Ave. .085 .03 .065

50 Side A .14 .03 .07
Side B .08 .05 .09
Ave. .11 .04 .08

75 Side A .18 .05 .10
Side B .09 .05 .10
Ave. .135 .05 .10

100 Side A .20 .05 .11
Side B .10 .05 .11
Ave. .15 .05 .11

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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"tPREDICTION OF CREEP IN PHASE I NAS-1-11774

METALLIC TPS PANELS SUMMARY REPORT

TDNiCr TEST NO. 8

LOAD . Kg

ist Step 2nd Step 3rd Step 4th StepSPECIMEN (10 Minutes) (10 Minutes) (5 Minutes) (10 Minutes)

TD87L 3.5 7.21 12.6 15.5
TD88L 2.8 6.1 10.8.: 14.5
TD100L 1.6 3.4 6.2 7.9

STRESS - MPa

SPECIMEN 1st Step 2nd Step 3rd Step 4th Step
(10 Minutes) (10 Minutes) (5 Minutes) (10 Minutes)

TD87L 10.5 21.7 38.0 46.8
TD88L 8.6 18.6 33.0 44.2
TD100L 5.0 10.4 19.1 24.2

F-3-17
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'jP REDICTION OF CREEP IN PHASE I NAS-1-11774
METALLIC TPS PANELS SUMMARY REPORT

TD NiCr Cyclic Creep Data

Cyclic Test Number 9
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (*K) (See Table - Page F-3-19)
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD49L TD76L TD83L
Specimen Thickness (cm) .0249 .0249 .0251
Specimen Width (cm) 1.2670 1.2680 1,2677
Applied Load (Kg) (See Table - Page F-3-19)
Test Stress (MPa) (See Table - Page F-3-19)
Pressure (Pa) (See Table - Page F-3-19)

Side A

Side B

Cycle % Creep
Number TD49L TD76L TD83L

1 Side A .03 .02 .02
Side B .03 .02 .03
Ave. .03 .02 .025

5 Side A .05 .03 .03
Side B .04 .03 .03
Ave. .045 .03 .03

15 Side A .05 .03 .03
Side B .05 .02 .04
Ave. .05 .025 .035

25 Side A .06 .04 .04
Side B .06 .03 .05
Ave. .06 .035 .045

50 Side A .06 .04 .04
Side B .06 .04 .05
Ave. .06 .04 .045

75 Side A .07 .03 .04
Side B .06 .05 .05
Ave. .065 .04 .045

100 Side A .09 .03 .05
Side B .09 .05 .06
Ave. .09 .04 .055

150 Side A .10 .04 .06
Side B .09 .05 .06
Ave. .095 .045 .06

200 Side A .11 .04 .07
Side B .11 .05 .06
Ave. .11 .045 .065

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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TDNICr TEST NO. 9

CYCLE STRESS ' MPa

TIME (SEC.) TEMP. PRESSURE

(oK) (Pa) TD49L TD76L TD83L

300 955 1.5 4.2 1.7 3.8

400 1200 2.4 9.9 4.4 8.6

500 1339 4.0 13.7 6.2 11.6

600 1439 5.2 16.0 7.4 13.3

700 1479 6.4 17.9 8.3 14.6

800 1482 7.2 18.8 8.8 15.3

900 1466 8.3 19.2 8.9 15.6

1000 1450 9.3 20.4 9.4 16.8

1100 1444 10.4 22.1 10.2 18.4

1200 1428 10.7 25.2 11.7 21.2

1300 1405 12.5 27.8 13.0 23.7

1400 1389 18.7 31.8 15.1 27.6

1500 1361 33.3 37.0 18.1 32.8

1600 1337 56.0 42.7 20.8 37.2

1700 1228 77.3 45.4 22.7 40.5

1800 1111 100.0 48.2 24.4 43.8

1900 1010 126.6 48.2 24.4 44.5

2000 944 319.9 46.0 23.1 42.9

2100 872 693.2 41.7 20.6 39.1

2200 813 1333.0 35.7 17.6 33.8

2300 750 41323.0 28.2 13.2 26.7

2400 694 101308: 19.7 8.6 18.8

2500 649 101308 11.7 4.5 11.0
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TD NiCr Cyclic Creep Data

Cyclic Test Number 10
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (OK) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD53L TD54L TD73L
Specimen Thickness (cm) .0249 ,0251 .0251
Specimen Width (cm) 1.2680 1.2680 1.2677
Applied Load (Kg) (See Table - Page F-3-21)
Test Stress (MPa) (See Table - Page F-3-21)
Pressure (Pa) (See Table - Page F-3-21)

Side A

Side B3

Cycle % Creep
Number TD53L TD54L TD73L

1 Side A .05 .03 .02
Side B .03 .02 .03
Ave. .04 .025 .025

5 Side A .06 .02 .04
Side B .06 .03 .05
Ave. .06 .025 .045

15 Side A .08 .02 .06
Side B .07 .03 .07
Ave. .075 .025 .065

25 Side A .09 .03 .06
Side B .09 .05 .07
Ave. .09 .04 .065

50 Side A .12 .03 .06
Side B .10 .05 .09
Ave. .11 .04 .075

75 Side A .15 .05 .08
Side B .13 .05 .09
Ave. .14 .05 .085

100 Side A .18 .05 .10
Side B .16 .06 .12
Ave. .17 .055 .11

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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TDNiCr TEST NO. 10

LOAD Kg

SPECIMEN 1st Step 2nd Step 3rd Step 4th Step
(10 Minutes) (10 Minutes) (5 Minutes) (10 Minutes)

TD53L 3.4 7.0 12.2 14.9
TD54L 1.6 3.4 6.3 7.9
TD73L 2.6 5.7 10.3 13.3

STRESS - MPa

SPECIMEN Ist Step 2nd Step 3rd Step 4th Step
(10 Minutes) (10 Minutes) (5 Minutes) (10 Mienta))

TD53L 10.4 21.6 38.0 46.4
TD54L 5.1 10.6 19.3 24.4
TD73L 8.0 17.5 31.5 41.0
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TD NiCr Cyclic Creep Data

Cyclic Test Number 11
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (oK) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD69L TD86L TD103L
Specimen Thickness (cm) .0262 .0259 .0259
Specimen Width (cm) 1.2682 1.2680 1.2682
Applied Load (Kg) 13.0 6.4 11.0
Test Stress (MPa) 38.5 19.2 32.7
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD69L TD86L TD103L

1 Side A .05 .01 .02
Side B .03 .02 .02
Ave. .04 .015 .02

5 Side A .06 .01 .03
Side B .05 .02 .04
Ave. .055 .015 .035

15 Side A .09 .02 .04
Side B .06 .03 .06
Ave. .075 .025 .05

25 Side A .11 .02 .05
Side B .07 .05 .07
Ave. .09 .035 .06

50 Side A .14 .03 .06
Side B .10 .05 .07
Ave. .12 .04 .065

75 Side A .17 .03 .06
Side B .11 .05 .09
Ave. .14 .04 .075

100 Side A .18 .03 .06
Side B .13 .05 .09
Ave. .155 .04 .075

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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TD NiCr Cyclic Creep Data

Cyclic Test Number 12
Alloy Designation TD NiCr
Heat Number TC 3875
Supplier NASA-Lewis*
Test Temperature (OK) 1478
Test Direction Longitudinal
Sheet Thickness (cm) 0.024 cm +0.004
Specimen Number TD63L TD77L TD85L
Specimen Thickness (cm) .0277 .0254 .0257
Specimen Width (cm) 1.2685 1.2687 1.2680
Applied Load (Kg) 10.9 6.7 12.5
Test Stress (MPa) 30.3 20.4 37.7
Pressure (Pa) Constant (< 1.333)

Side A

Side B

Cycle % Creep
Number TD63L TD77L TD85L

1 Side A .02 .01 .01

Side B .02 .01 .01

Ave. .02 .01 .01

5 Side A .02 .01 .01

Side B .01 .01 .01
Ave. .015. .01 .01

15 Side A .02 .02 .02

Side B .01 .01 .02

Ave. .015 .015 .02

25 Side A .02 .02 .02

Side B .03 .02 .03

Ave. .025 .02 .025

50 Side A .03 .02 .05

Side B .03 .02 .04

Ave. .03 .02 .045

Produced by Fansteel, Inc. for NASA Lewis Research Center under Contract NAS3-13490.
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Appendix G

ALTERNATE APPROACHES TO THE DEVELOPMENT OF EQUATIONS

During the course of this study limited investigations were performed on

various data sets in an attempt to develop equations that had lower standard errors

of estimates (better data fit).

The first of these investigations, as described in Appendix G-1, was the

attempt to take the literature survey data base for Ti-6AI-4V and orthogonalize it.

The reason for the orthogonalization was that during the development of the litera-

ture survey creep equation it was felt that the independent variables in the

regression analysis were interrelated (i.e. time, stress, and temperature) which

produced problems with multi-colinearity. Orthogonization was a way of reducing

this problem. Our approach to using orthogonalization is presented in Appendix G-l.

(For further information on this subject see Ref. 27, pages 150-158.) This approach

was successful, however it required the use of a large number of terms in the

equation which made it more difficult to work with than the existing equation and

as a result this technique was not pursued further.

A second approach examined was for the Rene '41 literature survey data and

involved the use of a finite difference equation. In the development of a litera-

ture survey equation for Rene '41 it was found that the equation was essentially a

"best fit" type and did not always describe the shape (time function) of the

individual creep curves. Therefore, using the concept that in any given creep

test the next data point will be a function of the previous data point a finite

difference approach was examined. The results of this study are presented in

Appendix G-2. The equation developed using this approach described the shape of

the creep curve but could not conform to the boundary condition of E = 0, at 
a 0

and t = 0 and as a result this approach was not pursued.

G-1
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The last approach was a nonliner least squares analysis of L605 and Ti-6Al-4V

data. During the program it appeared that there was a correlation between cyclic

and steady-state creep data for equal total time at load and temperature. The

correlation could not be found using the linear least squares analysis approach so

a nonlinear analysis was performed. Through the use of this approach we were able

to correlate the function of stress with strain for combined steady-state and cyclic

data, however, we could not correlate the function of temperature or time. While

this approach offers potential, program schedule and budget would not permit further

exploration in this area. Appendix G-3 describes our efforts in nonlinear least

squares analysis.
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APPENDIX GI-1

AN APPROACH TO ORTHOGONALIZING THE
INDEPENDENT VARIABLES IN A

REGRESSION EQUATION

I. Definitions (initial):

Y = yi is a column vector of T observations
I on the dependent variable.

Txl

X = fx..j is a matrix of T observations on n
Sindependent variables.
Txn

Xi refers to independent variable i.

Xi refers to the mean of independent variable i.

Y { yi

Txl is a vector of T estimates of the
dependent variable.

(yi is an estimate of yi).

E ei = jyj - yi i s a vector of T residuals
(errors).

Txl

S = e i  x lei  is the sum of squares of
lxl the error terms.

IxT Txl

ameans precedes in order.

II. Desired Results:

A. Derive a column vector of coefficients

B = fb. {
nxl

such that

= X B and S is minimum and all b
Txl Txn nxl are significant.

G-3
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B. In the event that there is any collinearity among
the columns of X (i.e., for some column i, for some
columns jk (k = i... ) and for some coefficients
at T 

r
S... i i (al(xmi > 0,

m=l 1=1

there may be difficulty in estimating the vector
of coefficients in such a way that S is minimum.

C. If there is an exact collinearity (i.e., one
independent variable is an exact linear function
of the other independent variables), there is no
unique solution to deriving the vector B.

D. If the collinearity is not quite exact, and if the
whole set of independent variables is 'forced,'
there is a potential problem in that the standard
errors of the coefficients may cast some doubt on
the significance of the coefficients. Thus one
may end up with the embarrassing situation of having
a significant equation (as measured by the multiple
R, or the overall F) and few, if any, significant
coefficients.

E. To circumvent these problems, the method of stepwise
regression was devised. It operates in such a
manner that one variable at a time is brought into
the equation. The criteria for entry quite simply
are (a) significance of the variable in explaining
variance and (b) independence of the entering
variable relative to the independent variable already
in the equation.

F. This method circumvents the multicollinearity problem
but at a cost. First, there is the cost in form
(or meaning); then there is the cost in precision.
In form, this cost manifests itself in restricting
itself to the earliest entering variables in a
collinear set. Thus higher order terms may lock
out lower order terms. The loss of precision may
come about when the dependence of the candidate
variable, relative to the independent variables
already in the equation, is too great to allow the
candidate's entry, but where the candidate can
account for a significant portion of the residual
variation of the dependent variable.
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G. A technique has been devised to correct this
condition by transforming the original independent
variables into a new orthogonal set. The original
variables are linear combinations of the new
variables and vice versa. The new set is orthogonal
in the sense the intercorrelations among them is
low. In a perfect orthogonalization technique,
the intercorrelation between the new variables would
be exactly zero. In our more practical approach,
the new variables are generated in such a way that
their intercorrelations are low enough to alleviate
the problem of form and precision.

H. The technique of orthogonization is not new, having
been employed in polynomial regression in the method
of orthogonal polynomials and in factor analysis
in the regression on principle components.

III. Technique of Regression on Near Orthogonal Variables:

First order the independent variables according to two
criteria and relable them Z1 = some X1, Z2 = some Xj ordered
higher than Xi such that

Zl~ Z2  Z3 .* Zn in the ordering.

Then derive regression equations relating each Zi (except
Z1 ) to those Z's which precede it in the ordering. Preceding
Z s are entered into the equation until the standard error
of estimate begins to increase (until F to enter is less
than 1.0). The residual from each equation [residual =

Z = Zi (Z1, Z2  Zi-1)]form a variable in our new

set. Let Zf = Z . By the method of least squares,
each residual hai zero correlation with those variables
entering the equation and thus may be expressed as
"variable Zi adjusted for Zl Z2... Z. i-1  If all the
preceding variables entered in each of the above regression
equations, the new variables (residuals) would be perfectly
orthogonal, since for any residual Z#, all the preceding
residuals (Zf,...Z-_1) are functions of the preceding
variables (ZI, Z2 .. 3 ).

Since the residuals are independent of the preceding
variables, they are independent of each other. In the
case where only some of the preceding variables enter
into the equations, they correlations between the residuals
may be greater than zero, but in any event, they should
suffice as an approximation to the process.
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The new set of variables (consisting of Z = Zf and Z*...Z*)
is then run against the dependent variabl to derive a
column vector of coefficients

C = ci

such that

or

Y = zi} ci +lei

Let the set of coefficients relating Z*'s with Z's be represented
by the matrix G = {gik such that

Szit - Zitf gik

or

Zt = zit (I - G)

where I is the identity matrix. Then substitute

Izitl (I - G) for I t to yield Y = zit (I - G) ci + E.

The product (I - G) I c gives a column vector D = dij

such that Y = IZit D + E.

By rearranging the columns of zit  and the rows of D, we
canexpress this equation in oigial form Y = XB + E
or Y = XB.

G-6
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Utilizing orthogonalizing procedures the following equation was derived

for the Reactive Metals portion of the Ti-6Al-4V data:

inc = -1.60105 + .76778Z 2** + 1.39468Z4** + .24348Z6** - 1.18079Z *7
(.08247) (.03822) (.01625) (.05316)

+3.60467Z 8** - .10396211** - 1.09665Z12** - .50740Z13*
(.09507) (.02030) (.10484) (.10459)

+.11015Z14** + .72766Z16** + .62602Z17** + .85095Z20*
(.02846) (.12843) (.10602) (.02807)

+.65313Z21** + .30998Z24*
(.04119) (.05184)

R = .9729 The standard error of the coefficients are the figures
SE = .1754 in parentheses; * = significant at the 95% level,

** = significant at the 99% level.

where:

Z2 = (X2 - 229.6774 + 264.768X3 ) x 10
- 2

Z4 = (X4 - 2708.787 + 8.76202X2 + 2994.652X3) x 10-3

Z6 = (X6 - 50.56067 - .04075X2 + 35.54213X3 + .00027X4 + 16.64302X7) x 1

Z7 = (X7 - 2.91615 + 2.08822X3) x 101

Z8 = (X8 - 38.59265 + .13689X2 + 42.84755X 3 - .00396X4 + .15648X6) x 10-1

Z11 = (X11 - 94.6895 - .73939X 2 + 79.713X 3 - .09289X - 1.65322X6

-.80516X8 + 2.09007X9 + 17.46747X1 0 + .00006X1 9 + .00284X20) x 10-1

Z12 = (X12 - 27.75812 - 5.19467X 6 + 17.22734X7 + .12260X11 - 2.55488X14
+ 25.86461X18 - .00039X20 + .00729X21 + .29827X22 - .00013X23 )

x 10-1

Z1 3 = (X1 3 + 3.11399 - .00957X2 - 1.07833X3 - 1.24902X6 - .01214X8

+ .02755X9 - 1.45858XI0 + .00184Xl ) x 101
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Z14 = (X14 + 24.13931 - 20.9303X 3 + .00081X4 - 1.23404X8 - 4.13036X10

- .02142X11 +.00034X 20 - .04262X 2 2 - .00002X2 3 ) x 1

Z16 = (X1 6 + 15542.488 + .15819X4 + 9.94253X 9 - 4866.97X10 + 2.21308X11

- 130.1504X1 3 - 5.9535X1 4 - 12374.320X18 - .05248X20 - .27890X 21)

x 10 - 2

ZI7 = (X 1 7 + 5183.19922 - 13443.8X3 + 3.77204X4 + 1547.665X8 - 131.697X11

- 855.631X12 + 5969.641X13 - 7.40512X16 + 3.5764X20 - 801.125X 2 2

- .09379X 23) x 10- 4

Z20 = (X20 - 7808.86328 - 100.71542X2 + 8273.63672X 3 - .24669X4

r ) x 1-3
+ 984.1379X6 + 174.171X8) x 10- 3

Z21 - (X21 - 463.50928 - .7699X 4 + 22.00688X6 + 5.16804X 8 + 84.767X10

+ 408.36768X18 + .00009X1 9) x 10 - 2

Z24 = (X2 4 - 665.85156 - 1.80408X4 + 347.87134X 6 + 343.60107X 8

- 20.18231X11 - 130.64374X12 + .07985X17 + .00047X19 + .06608X2 0

- 24.84586X22 - .5659X 2 3 ) x 10

Where:

X 2 = o X12 = (Ina)(int) X22 = To

X3 = T (OK) X13 = (ino)[T(OK)]- X2 3 = to

14 X24
X4 = t X14 = ( 4nt)[T(OK)] -  X24 = taT

X6 = Ino X = Ine4.(ToK)-

7 = [T(OK)]- 17 = ln(t)lnoe 4
. (TOK)

X8 = Int X18 = TOK
2

X9 = (Ina)2  X19 = t2

X10 = ET(OK)]- 2  
20 = 2

X1 1 = (Int)
2  X21 = Tt

NOTE: (X1 5 = T-lot) does not enter as independent variables
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APPENDIX G-2

AN APPROACH TOWARD DEVELOPING A FINITE
DIFFERENCE EQUATION FOR RENE' 41

The predictive equations developed to describe the data are essentially "best

fit" equations and may or may not describe the shape of the individual creep curve.

In an attempt to better describe individual creep curves the finite difference

approach was applied to develop an equation for the same Rene' 41 steady-state data

base used in development of Equation (3-19). The additional variable strain at

time t was included as a function of strain at time t-At, using a At of 20 hours

for the data set. This allowed creep strain to be expressed as a function of the

previous time history at any given stress and temperature.

The following finite difference equation was computed, using the BMD02R computer

program.

Ct+1 = 1.057 + .053 Ino - 1.289/T + .878 t + .195 t2  (1)

where a = stress, MPa

T = temperature, 'K/1000

t+l = Creep strain at time t + At where At = 20 hours

Et = Creep strain at time 
t

In order to determine the form of the equation for strain as a function of

time, a solution was developed for an approximate differential equation form of

Equation (1).

A brief development of the solution is presented below. Suggestions by

Mr. Lars Sjodahl, General Electric Company, Evendale, were extremely helpful in the

analysis.
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Subtracting et from each side of Equation (1) and substituting the expression

A = 1.057 + .053 Ina - 1.289/T, the equation can be

rewritten as:

As = t+ - Et = A - .122 st + .195 et
2  (2)

The expression A may be considered a constant for any particular steady state

creep test. Dividing both sides of Equation (2) by the time increment, At, we

obtain

A_ 1 2
-A = [A - .122 S + .195 E i (3)

At At t t

For small At, A , and separation of variables yields:
At n At

t t
(4)

dt = d21/20 [A - .122 t + .195 E ]

Integrating, the expression and solving for strain, the equation becomes

s = 51.282 Vq tan (yt + B) + .312 (5)

where:

q = .00195 A - .0000372

y = 'q/2

S = arctan (- 0061)

J q

The finite difference prediction equation developed (Equation (5)) was found

to provide excellent predictions in the stress and temperature range of the data.

However, a study of the equation showed that extrapolation outside the data base

range could result in erroneous predicted values of strain. This can be noted from

the equation since E # 0 at t = 0.
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Since it will, in general, be difficult to solve resulting finite difference

equations and may be impossible to control resulting boundary conditions of E = 0

at 0 = 0 and t = 0, which must be met for application of the equation to TPS creep

deflection analysis, the approach was not pursued further during this program.
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APPENDIX G-3

'NONLINEAR LEAST SQUARES
FIT TO L605 AND Ti-6Al-4V DATA

Based on plots of L605 and Ti-6AI-4V cycles and steady-state creep data it

appears that one equation may be used to describe each data set (L605 and Ti-6AI-4V).

In an attempt to develop a common equation, a nonlinear least squares analysis was

attempted using the titanium and L605 data. Temperatures and stresses are in OF

and ksi respectively.

The first form attempted was

E = sinh [( a)n] (1)

where e=strain, o=stress, and a and n are unknown coefficients. Temperature and

time were constant for each set of data used to obtain and n. Steady-state and

cyclic data were combined for each constant temperature and time. Table 1 shows

the results of the fits obtained. The error in these fits was considered unaccept-

ably high.

The second form attempted was

e = c0 e-bt + Clt + c 2  (2)

where e=strain, t=time, and cO, cl, c2 , and b are unknown coefficients. Stress

and temperature were held constant and coefficients (c0 , C1 , c2 , and b) were

generated for each combination of stress and temperature. Attempts to use this

form were unsuccessful. Intermediate results printed showed that c0 and b both

grew simultaneously and did not appear to be approaching any limit. It was decided

to modify this form to eliminate this problem and at the same time ensure that the

new form had the properties:

(a) E(t) was linear for large t;

(b) e'(t) was "large" for small t, but decayed rapidly to some value

appropriate for large t; (derivative of £ with respect to t)

(c) E(0) = 0.
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The third form attempted was

= c O (1-e-bt) + c1t (3)

where t and e are the same parameters as in Equation 2. This form has the proper-

ties described in the next paragraph. The results obtained were very good for all

data sets used. Table 2 shows the coefficients obtained for various combinations

of strain and temperature.

Since each coefficient c0 , cl, and b (in Equation 3) is a function of tempera-

ture and stress, the next step attempted was to perform a linear regression analysis

on each of these coefficients including such terms as T, a, a 2 , Ta, and Ta 2 . The

residual for this equation was .9705. The resulting fits were not sufficiently

close to the previously calculated c0 , cl, and b values. (See Tables 3, 4, and 5.)

At this point, the values for the coefficients (co, C1 , and b) were separated into

two groups corresponding to steady state and cyclic data. Again a linear regression

analysis was performed. The results were somewhat better but still unacceptable.

After plotting the "steady-state" co and c 1 as a function of a, it became

clear that one possible form for these variables would be

c = sinh [Ba] (4)

where c = c0 or cl. The results were encouraging, although the calculated value

was usually too large for small a. As an attempt to improve the fit, the form

c = sinh [(8a)2] (5)

was also tried on the "steady-state" c0 and cl values. The fit was in many cases

better. As a final attempt to improve these fits, the form

n.
= sinh [( o) 1 (6)

was used. The results were very good. The values for n and 8 are shown in Tables

6 and 7. Unfortunately, the values for n and shown there do not suggest a simple
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functional relationship with the temperature. However, the intermediate results

suggest that any point in a fairly large region in the B, n plane can produce an

"acceptable" fit. Thus it may be possible to obtain an acceptable fit for all

temperature, T, by using a relatively simple form such as

= 8 + 8 T

and (7)

nj = nj + nj T

This possibility was not explored because of time limitations. The calculations

described in this paragraph also have not been attempted with the "cyclic" coeffi-

cients because of time limitations.

The relationship between b (in Equation 3) and a and T has not been explored

to any great extent. However, preliminary results suggest that any point in a

fairly wide range can serve as an acceptable value for b. That is, Equation 3 is

not particularly sensitive to the value of b. Thus it should be possible to use

a fairly simple relation in fitting b as a function of a and T.

The resulting form would then look like

n -b(T,o)t n n.
e = sinh [() ]{l-e } + sinh [(81t ] (8)

where B', 1, no, n1 are some functions of T (e.g., equation 7) and b (T, a) is the

function described in Equation 3.
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Table 1 .... = sinh [(a )n]

Input Calculated

Temperature stress(a) strain(c) strain 8 n

OF ksi % %

1300 7.40 .050 .05220 .011131 1.182886
8.00 .070 .05725

11.70 .090 .08982
16.00 .115 .13026
16.00 .120 .13026
18.70 .174 .15685

1435 4.00 .062 .02169 .059777 2.677391
7.57 .155 .11996
8.00 .175 .13920

12.10 .440 .43256
16.00 .950 1.00880
18.50 1.740 1.71669

1600 2.00 .043 .00157 .101148 4.041910
4.00 .081 .02580
4.30 .141 .03457
6.85 .330 .22890
8.00 .424 .43786
8.00 .318 .43786
8.00 .457 .43786

10.66 1.820 1.81129

1800 1.92 .060 .00485 .193888 5.391857
2.00 .069 .00605
2.00 .070 .00605
2.98 .155 .05196
4.00 .189 .25672
4.90 .845 .83349

900 7.00 ;225 .26308 .051557 1.321247
7.30 .250 .27844

12.00 .620 .55545
19.00 '1.120 1.13413

825 7.00 .045 .04127 .015592 1.439139
17.00 .140 .14849
28.00 .310 .30806
45.00 .680 .63728
46.00 .620 .66028

725 24.00 .040 .04275 .008279 1.950928
30.00. .070 .06610
43.00 .130 .13372
46.00 .155 .15266
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Table 2. . . . = c (1-e-bt) + c t
0 1

Temperature Stress b co  C1
OF ksi

650 46.00 1.2452 .02675 .00082
69.00 1.0663 .04726 .00215

725 24.00 .6279 .02469 .00078
30.02 1.1332 .05212 .00074
43.40 1.2218 .09592 .00109
46.00 .5677 .07138 .00281
57.86 .9363 .14805 .00321
69.00 .4075 .21548 .01279

825 7.00 .4178 .02053 .00081
16.63 .8501 .06182 .00252
24.00 .3427 .07640 .00326
27.85 .6778 .11338 .00656
44.57 .3757 .24689 .01490
46.00 .5815 .17893 .01149

950 7.00 .4056 .07126 .00514
7.31 .4425 .07305 .00588

12.12 .4689 .23018 .01294
18.81 .2891 .35600 .02550
24.00 .8148 .19001 .05505

1050 2.85 * .04100 .01123
4.43 * .07362 .02508
6.85 * .10645 .05269

* Computed value considered to be unreliable.
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Table 3 . . .. Linear Regression for b

b = BS2T*o 2*T + BST*o*T + BT*T + BCON + BS*o

Input Calculated
Temperature(T) Stress(c) b b

OF ksi

650 46.00 1.245 1.256
69.00 1.066 1.050

725 24.00 .628 .815
30.02 1.133 .902
43.40 1.222 .948
46.00 .568 .933
57.86 .936 .769
69.00 .408 .469

825 7.00 .418 .387
16.63 .850 .590
24.00 .343 .668
27.85 .678 .683
44.57 .376 .533
46.00 .582 .504

950 7.00 .406 .437
7.31 .443 .441

12.12 .469 .492
18.81 .289 .511
24.00 .815 .485

Values for b at temperature=1050 were considered unreliable
and were not used in the regression.

The term b is from the equation (3) E = co (1-e-bt) + clt

where a, T are stress and temperature respectively, while BCON, BS,

BT, B 55T, and B 52T are constants from a linear regression analysis.
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Table 4 . . . . Linear Regression for c O

C0 = COS2*o 2 + COST*o*T + COT*T + COS*o + COCON

Input Calculated
Temprc ature (T) Stress(o) Co CoOF ksi

650 46.00 .0268 -.0043
69.00 .0473 .0042

725 24.00 .0247 .0279
30.02 .0521 .0479
43.40 .0959 .0947
46.00 .0714 .1042
57.86 .1481 .1487
69.00 .2155 .1928

825 7.00 .0205 .0225
16.63 .0618 .0759
24.00 .0764 .1179
27.85 .1134 .1402
44.57 .2469 .2400
46.00 .1789 .2487

950 7.00 .0713 .0822
7.31 .0731 .0849

12.12 .2302 .1263
18.81 .3560 .1846
24.00 .1900 .2303

1050 2.85 .0410 .0843
4.43 .0736 .1017
6.85 .1065 .1283

The term b is from the equation (3) E = co (1-e- b t) + clt

where a, T are stress and temperature respectively, while BCON, BS,

BT, B 55T, and B 52T are constants from a linear regression analysis.
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Table 5 . . . . Linear Regression for cl

c, = C1S2T*o 2 *T + CIST*a*T + C1T*T + CICON + C1S2*o 2

Input Calculated
Temperature (T) Stress(a) cl C1OF ksi

650 46.00 .00082 -.00241
69.00 .00215 .00480

725 24.00 .00078 -.00766
30.02 .00074 -.00223
43.40 .00109 .00547
46.00 .00281 .00627
57.86 .00321 .00701
69.00 .01279 .00340

825 7.00 .00081 -.01072
16.63 .00252 .00291
24.00 .00326 .01430
27.85 .00656 .01335
44.57 .01490 .01805
46.00 .01149 .01785

950 7.00 .00514 .01286
7.31 .00588 .01339

12.12 .01294 .02084
18.81 .02550 .02879
24.00 .05505 .03303

1050 2.85 .01123 .02368
4.43 .02508 .02689
6.85 .05269 .03145

The term cl is from equation (3) e = c (l-e - b t ) + clt

where a, T are stress and temperature respectively, while CICON, CIT, CIST,

CIS2, and CIS2T are constants from a linear regression analysis.
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Table 6 . . . . c0 = sinh [(Bg0) n ]

Input Calculated
Temperature Stress(a) C CO no

OF ksi 0 0

650 46.00 .02675 .02651 .00172* 1.43263*
69.00 .04726 .04740

725 24.00 .02469 .01472 .00786 2.52945
46.00 .07138 .07638
69.00 .21548 .21440

825 7.00 .02053 .01683 .00545 1.25070
24.00 .07640 .07868
46.00 .17893 .17828

950 7.00 .07126 .07110 .00511 .79387
24.00 .19001 .19007

* Value of coefficient is unreliable but is reported because a
reasonable fit was obtained.
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Table 7 . ... c = sinh [(Bloa)n

Input Calculated
Temperature Stress(a) cI c 8 n

OF ksi 1 1 1 1

650 46.00 .00082 .00028 .00424* 5.00050*
69"00 .00215 .00215

725 24.00 .00078 .00025 .00451 3.73737
46.00 .00281 .00281
69.00 .01279 .01279

825 7.00 .00081 .00030 .00217 1.93637
24.00 .00326 .00326
46.00 .01149 .01149

950 7.00 .00514 .00511 .00927 1.92939
24.00 .05505 .05505

* Value of coefficient is unreliable but is reported because a
reasonable fit was obtained.
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APPENDIX H

ERROR ANALYSIS FOR CYCLE CREEP FURNACE STRESS MEASUREMENTS

I. Introduction

The stress and temperature data are recorded with a miniature 50 channel

digital data system after the required signal conditioning has been performed.

The data errors, which are the subject of this discussion, are the static

errors of the system. Dynamic errors are not involved in the analysis

since the sampling rate and software tend to eliminate dynamic effects by

1) using a record rate of one sample every 50 seconds and 2) deleting the

first and last samples of a cycle in an effort to stay off the slope of

the stress curve. It is assumed that system noise results in load

fluctuations which are random in nature and that the mean value of data

over a cycle has a mean deviation that is negligible. This does not imply

that the standard deviation will be negligible. Noise levels may cause

significant load variations which, if recorded, may result in a substantial

standard deviation.

II. Basis for Analysis

A. Statistics

1. Mean Value

4iI

2. Mean Deviation

(2)

3. Standard Deviation

- X (3)
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III. System Analysis

A. Transducer-Stress

The data system is used to record the millivolt output of a strain

gage bridge force transducer. Several factors affect the uncertainty

which should be assigned to the magnitude of load measured with this

transducer. These factors are discussed and their effects are

evaluated in the following paragraphs. The equation for transducer

output may be written as follows:

e = F Li ftl + tr-t) (4)

where = transducer output in mV

F = applied force-pounds

K = calibration factor

in mV/pound/Volt Excit.

ft = fractional temperature
sensitivity

t - operating temperature

(temperature must be expressed in consistent units, i.e., OF or oC)

1. Transducer Calibration

The calibration is performed at discrete points covering the

specified range, the load being applied in both the ascending

and descending directions. The result of the calibration should

be incremental eo, (Equation 4) versus incremental load.

The calibration statement may include a tolerance for linearity

and hysteresis, repeatability and for the standards used to

perform the calibration. The temperature at which the calibration

was performed must be specified. If the transducer temperature
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coefficient is unknown, tests at two or three temperatures are

needed.

a) Nonlinearity and hysteresis are determined by a best straight

line through zero. This imposes some unnecessary restraints

and results in a tolerance generally larger than simple best

straighc line fit which is recommended.

b) Repeatability is a measure of the ability of the transducer

to produce the same output each time a given load is applied,

approaching the load level from the same direction each time.

This is the figure specified on the certificate. The figure

used in the analysis should include long-term stability as

this historical data is obtained for a given transducer.

c) The statement of tolerance for the standards used is a measure

of the accuracy with which a given eo versus load was determined.

d) Analysis of Data

(1) use the statement of accuracy for the standards, converted

to fractional form.

(2) use the figure for repeatability, again converted to

fractional form.

(3) calculate the average mV/pound/volt by obtaining the mV/

pound/volt value for each increment (es,) and then average.

Include data for both directions of load.

es iek (5)

where esi = the mV/pound/Volt sensitivity for the ith
increment

es = transducer sensitivity in mV/pound load/Volt
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The figure es is the slope of the straight line which fits

in the data. The need for close tolerance has not (so far)

justified the more rigorous least squares fit).

(4) Combine non-linearity and hysteresis into a single

tolerance based upon the fractional maximum deviation from

the straight line fn:

where fn =  (6)es
and esi is that increment having the greatest deviation

from e.

(5) The tolerance to be used for nonrepeatability is that

specified by the calibration certificate, usually in

percent, converted to fractional form. Designate fn.

(6) The uncertainty in calibration is fs = the fractional error

equivalent to the tolerance specified for the standards.

(7) Convert the data which defines ft to ft as follows:

a. Calculate e5 for each temperature

f -estr - esrz (7)it" (7)

where tr is the reference temperature

t z is a temperature higher than tr

Gt = t z - t r

* tr and t z should be close to and bracket the expected

operating temperature.

(8) Expressing again the transducer equation

e, FPc[i +ft (,- t)] (8)
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=Fes EL ft (tr-t)}Vv
(9)

where V, is the bridge excitation.

(9) The uncertainty in the calibration may be evaluated as

follows:

fc = fh + fn + fs (10)

This expression assumes the error in ft is negligibly

small. (Typical Et = .015% for MAC made transducers. If

t is measured to + 10F the temperature error ft, in

fractional form, is .00015.

(10) The Real specifies equivalent load. This factor is derived

from a best straight line through zero analysis. Unless

the equivalent mV level is given, this value cannot be

converted directly to equivalent pounds for straight line

not thru zero.

The equivalent can be found by applying the Real to

to the bridge and get mV/ (cal)
V (cal)

than Equiv = mV/v (cal) (

Isee 2-a-(5)]

B. Transducer Signal Conditioning

1. Repeating equation (9) e. - F e5  I + t (t - t) Vv

the factors directly affected by the signal conditioning are:

a) Ve - the bridge excitation voltage

o the stability of the power supply is not perfect.

o the resistors used to adjust the excitation to the required
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level vary with time and temperature.

Variations in bridge voltage have a direct effect on eo. Since

the recorded calibration level on the data system constitutes

the reference level until a new calibration level is recorded,

it is necessary that Ve be stable, within the limits required

for measurement accuracy from one calibration to the next.

The instability of Vv isEv the fractional equivalent is

f v (12)Vv
measurements indicate this may be +0.001.

b) ft - the error due to a change in transducer sensitivity versus

temperature. The contribution to this factor by calibration

was stated to be negligible. This is not necessarily true

for use. The error in temperature measurement is somewhat

larger and will determine the magnitude of this contribution.

The fractional error is ft. ft =~t(100).

c) If bridge balance is used a balancing current is caused to flow

through the bridge. The stability of this current, relative

to bridge current, is determined by the stability of the components

in the balance circuit. The variation observed is 0.2 to 0.37%,

depending upon the relative size of adjustable and fixed

resistors in the balance network and the change in all these

resistors due to temperature. The fractional error, directly

contributing to a change in e, ,

d1 (13)

Balance networks are not normally used in the creep test except

for the control transducers.
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d) If the procedure suggested in d(10) are followed in establishing

the Rcal equivalent, the error resulting from the procedure is

due to the relative accuracy of the measurements of voltage

made at the time of the determination and those made in the

calibration process. If proper procedures, such as zeroing

the measuring instruments, sufficient resolution, careful

calibration, etc. have been observed; these measurements can

be made with a combined uncertainty of .03%. The error,

otherwise, results from the difference between the specified

Rc4 and the one actually used. A +.017. resistor is specified

by:the calibration laboratory. Available laboratory instruments

permit measurements to be made so that the specified value of

resistance can be matched within 0.1%.

The fractional uncertainty due to this factor is f.

e) Other Effects - The sketch below is used for reference:

SIMPLIFIED SIGNIAL CONDITIONER SClHEiiTIC

RB RS
LLDL

C.FL L -- '-eo SYSTFM

R b

FIGURE (1)

o The leads which connect the load cell to the data system have

a resistance of approximately 0.5 ohm per single line or

conductor. The voltage applied to the bridge is then

(1 - 1/350) = .997 of the voltage measured by
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V at ab. Calculations of load based upon measurements of

V and eoat the data system terminals are in error by "-0.3'.

However, the Rcal is applied to the bridge with the same

excitation so the recorded equivalent is correct.

* An error will result in determining the Rcal equivalent as

specified in step 1-d(10) if this factor is not accounted

for in Vv . The value of resistance RWI and Ry2 Figure (1)

must be measured.

o The addition of lead resistance to the Rcal resistor does

not contribute significant error - approximately 1 in 104

or less depending upon the size of the Rcal and the actual

value of 2 Rw. For 22 AWG wire, RW is about 0.016 ohms per

foot of 19 strand conductor.

C. Data System Contribution to Total Error Ed

1. The data system consists of the elements shown below which bear

directly upon the accuracy of measurements made.

MULTI PLEX I "E. 1
SWITCH 

:

VATA P._aCC__D

INPUT'

CAL LEVI
INPUT

FIGURE (2)
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2. The use of an Real equivalent for transducer inputs calibrates

the system-from transducer through data system-each rime a Zcal/Rcal

record is made. The data processing software uses this recorded

calibration signal for scaling. If the amplifier gain or zero

changes or an A/D conversion error due to a resistor change would

occur, the software will correct for that. However, if the internal

calibration reference level changes, a correction may be applied

which will be erroneous. The stability of the reference supply is,

therefore, a key parameter. er is the variation in the reference

voltage (Vr ). The fractional error fr

r e (14)

A more useful form is fr (counts equivalent to Vr). Measurements

indicate fr is less than .001.

3. If the amplifier is non-linear, this will result in an error related

to level of signal. This effect has been evaluated by measurements.

This error is designated fj. The magnitude of this factor is

.0005.

4. The data system direct measurement accuracy must be assigned to data

from thermocouples since no calibration level is used. This factor

is part of the evaluation, designatedEd.

Interims of Counts

q/100 (counts full scale) = (fr + ft) (counts full scale)

5. This analysis of the data system makes some assumptions.

a) That the thermal units of the input circuits are negligible.

b) That the digitizing error is constant.

c) That for typical applications and installations the effect
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of temperature is negligible.

Bench tests indicate the effect of these factors to be negligible.

6. The following is a summary of the data obtained using the digital

system to measure reference inputs over a period of three months.

a) The stability of the reference - deviation is less that 0.1%

of full scale or fr (counts) = 2; fractional = .001.

b) Non-lin.!arity - 0.05% or 1 count. So ft (counts) = 1
fractional = .0005D. Analysis Applied to Direct Voltage Inputs

1. The system can be analyzed as a voltmeter since the only

consideration is the direct measurement accuracy of the digital

data system which has been expressed in fractional form (fraction

of full scale) as:

fD = fr + fQ (in counts) = 3
fractional = .0015

2. For thermocouples the error can be expressed in equivalent

temperature as

fD (mV f.S. - data system) = T
(mV/F)T/C

T = 15 x 10- 6 v .68 =0.70F22 x 10"~v/o-

IV. Summary of the Analysis

A. Transducer Uncertainty

1. Equation - re-writing equation (9)

= eoe 8  t k )j VL(15)

the error ine s may be expressed as

es= (1 + fc) (16)

= s (1 + fh2:fnL.fs)
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therefore

eb (17)

The uncertainty can be expressed simply as fc = fh + fn + fs - the

maximum fractional error in the calibration. If a dead wt. calibration

is performed typical figures are fh = .0015, fn = '.0005, fs = .0005

and fc - .0015. Each calibration must be evaluated.

B. Contributions of Signal Conditioning:

Signal conditioning errors explained in detail in the text can be

expressed as the sum of fractional errors.

fa = fv + ft + fd + fe (18)

for the creep test system

fd does not apply

fe: error can be as small as .03% so fe = .0003

ft: the error in temperature measurement is about 10F (0.70 F for data
system + 0.4 for T/C Calibration)

If transducer temperature sensitivity t is +.02%/oF, f= .0002

fv: a stability of 0.1% or better indicates fv = .001

So fa = .0003 + .0002 + .001

fa = .0015

C. Contribution of Data Sstem

fD = fr + f2 .001 + .0005

counts = 3 = .0015 (2000)

fractional = .0015

D. If the inaccuracy of the measurement (fm) is assumed to be the sum

fm = fc + fa + fD (19)

fc will vary with transducer range.
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If the example given for f. is used:

fm= fc + fa + fD

So.0015 + .0015 + .0015 = .0045

= 0.45%
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